

АНАЛИЗАТОР РАСТВОРЕННОГО КИСЛОРОДА МАРК-404

Руководство по эксплуатации ВР16.00.000РЭ

г. Нижний Новгород 2021 г.

OOO «ВЗОР» будет благодарно за любые предложения и замечания, направленные на улучшение качества анализатора.

При возникновении любых затруднений при работе с анализатором обращайтесь к нам письменно или по телефону.

почтовый адрес 603000 г. Н.Новгород, а/я 80

отдел маркетинга (831) 282-98-00

market@vzor.nnov.ru

сервисный центр (831) 282-98-02

service@vzor.nnov.ru

http: www.vzornn.ru

Система менеджмента качества предприятия сертифицирована на соответствие требованиям ГОСТ Р ИСО 9001-2015.

В анализаторе допускаются незначительные конструктивные изменения, не отраженные в настоящем документе и не влияющие на технические характеристики и правила эксплуатации.

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА	4
1.1 Назначение изделия	4
1.2 Основные параметры и размеры	5
1.3 Технические характеристики	7
1.4 Состав изделия	9
1.5 Устройство и принцип работы	9
2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	19
2.1 Эксплуатационные ограничения	19
2.2 Указание мер безопасности	19
2.3 Подготовка анализатора к работе и проведение измерений	20
2.4 Проверка технического состояния	34
2.5 Возможные неисправности и методы их устранения	
3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	37
4 КОМПЛЕКТ ПОСТАВКИ	42
5 СРЕДСТВА ИЗМЕРЕНИЯ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ	43
6 МАРКИРОВКА	43
7 УПАКОВКА	44
8 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	45
9 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	45
10 СВЕДЕНИЯ О ПОВЕРКЕ (КАЛИБРОВКЕ)	46
11 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	47
12 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	48
13 СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ	48
14 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	48
ПРИЛОЖЕНИЕ А. Методика поверки	49
ПРИЛОЖЕНИЕ Б. Растворимость кислорода воздуха 100 % влажности в дистиллированной воде в зависимости от температуры	65
ПРИЛОЖЕНИЕ В. Протокол обмена	
ПРИЛОЖЕНИЕ Г. Сведения об электролите	

Настоящий документ является совмещенным и включает разделы паспорта, а также методику поверки.

Руководство по эксплуатации (РЭ) предназначено для изучения технических характеристик анализатора растворенного кислорода МАРК-404 (в дальнейшем – анализатор) и правил его эксплуатации.

При передаче анализатора в ремонт либо на поверку РЭ передается вместе с анализатором.

Анализатор соответствует требованиям ГОСТ 22018-84 «Анализаторы растворенного в воде кислорода амперометрические ГСП».

ВНИМАНИЕ: Конструкции датчика кислородного и блока преобразовательного содержат стекло. Их необходимо оберегать от ударов!

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

- 1.1.1 Наименование и обозначение изделия Анализатор растворенного кислорода МАРК-404 ТУ 26.51.53-009-39232169-2018 (идентичны ТУ 4215-009-39232169-2010).
- 1.1.2 Анализатор предназначен для измерения массовой концентрации растворенного в воде кислорода (КРК).
- 1.1.3 Область применения на объектах экологии, рыбоводства, а также в других областях, где требуется контроль концентрации растворенного кислорода в поверхностных и сточных водах, в том числе мутных и окрашенных, с наличием органических загрязнителей.
 - 1.1.4 Тип анализатора:
 - с внешним поляризующим напряжением;
 - с шестью чувствительными элементами;
 - непрерывного действия;
 - однодиапазонный;
- с автоматической коррекцией температурной характеристики каждого чувствительного элемента;
- с выдачей результатов измерения на индикатор, по токовому выходу от 0 до 20 мА (с датчиками ДК-404) или от 4 до 20 мА (с датчиками ДК-404/1) и по порту RS-485;
 - чувствительные элементы анализатора (датчики) погружные.

1.2 Основные параметры и размеры

менного тока напряжением 220 В при частоте (50 ± 1) Гц.

- 1.2.1 По устойчивости к климатическим воздействиям анализатор имеет группу исполнения В4 по ГОСТ Р 52931-2008.

 1.2.2 По устойчивости к механическим воздействиям анализатор имеет исполнение L1 по ГОСТ Р 52931-2008.

 1.2.3 По защищенности от воздействия окружающей среды анализатор имеет исполнение IP30 по ГОСТ 14254-2015.
- 1.2.4 По устойчивости к воздействию атмосферного давления анализатор имеет исполнение P1 по ГОСТ P 52931-2008 атмосферное давление от 84 до 106,7 кПа.

7 кПа.
1.2.5 Параметры анализируемой воды:
– температура,°C от 0 до плюс 50;
давление, МПа, не более
— массовая концентрация солей, г/дм 3 от 0 до 40;
- pH от 4 до 12.
1.2.6 Допустимые массовые концентрации неизмеряемых компонентов:
 растворенного аммиака, мг/дм³, не более
 растворенного фенола, мг/дм³, не более
1.2.7 Рабочие условия эксплуатации:
а) температура окружающего воздуха,°С:
1) блок преобразовательный от плюс 5 до плюс 50;
2) модуль токового выхода датчика кислородного
от минус 40 до плюс 50;
б) относительная влажность окружающего воздуха:
1) блок преобразовательный – 80 % при температуре плюс 35 °C и бо-
лее низких температурах без конденсации влаги;
2) модуль токового выхода датчика кислородного – 95 % при темпе-
ратуре плюс 35 °C и более низких температурах без конденсации
влаги;
в) атмосферное давление, кПа (мм рт. ст.) от 84,0 до 106,7(от 630 до 800).
1.2.8 Градуировка анализатора – по воздуху 100 % влажности.
1.2.9 Электрическое питание анализатора осуществляется от сети пере-

Допускаемое отклонение напряжения питания от минус 15 до плюс 10 %. 1.2.10 Потребляемая мощность при номинальном значении напряжения

1.2.11 Сопротивление нагрузки каждого из токовых выходов, Ом,

- 1.2.13 После установки запасных частей из комплекта ЗИП и градуировки анализатор сохраняет свои характеристики в пределах норм, установленных в технических условиях на анализатор.
- 1.2.14 Габаритные размеры и масса узлов анализатора соответствуют значениям, приведенным в таблице 1.1.

Таблица 1.1

Наименовани	Габаритные	Macca,	
y	ЗЛОВ	размеры,	кг,
		мм, не более	не более
Блок преобразовательни	ый BP16.01.000	244×163×94	1,80
Датчик кислородный ДК-404	Датчик ВР16.12.100 (без кабеля)	Ø20×223	
BP16.02.000	Модуль токового выхода ВР16.02.200	Ø17,6×108	0,35
Датчик кислородный ДК-404/1	Датчик BP16.12.100 (без кабеля)	Ø20×223	0,35
BP16.02.000-01	Модуль токового выхода BP16.02.200-01	Ø17,6×108	0,55

- 1.2.15 Условия транспортирования в транспортной таре по ГОСТ Р 52931-2008:
 - температура, °C от минус 20 до плюс 50;
 - относительная влажность воздуха при 35 °C, % 95 \pm 0,3;
- синусоидальная вибрация с частотой 5-35 Гц, амплитудой смещения 0,35 мм в направлении, обозначенном на упаковке манипуляционным знаком «Верх».
 - 1.2.16 Требования к надежности

 - 1.2.16.2 Среднее время восстановления работоспособности, ч, не более...2.
 - 1.2.16.3 Средний срок службы анализаторов, лет, не менее 10.
 - 1.2.17 Требования безопасности
- 1.2.17.1 Анализатор по способу защиты от поражения электрическим током относится к классу защиты 1.
- 1.2.17.2 Электрическая изоляция между цепями питания анализатора и его корпусом должна выдерживать без пробоя и поверхностного перекрытия в течение 1 мин действие испытательного напряжения переменного тока со среднеквадратичным значением 1500 В и частотой (50 \pm 1) Гц в нормальных условиях применения.
- 1.2.17.3 Электрическое сопротивление изоляции цепей питания анализатора между штырями вилки и корпусом, МОм, не менее:

 - при температуре окружающего воздуха 50 °C 10;

1.3 Технические характеристики

Верхний предел диапазона измерения КРК зависит от температуры анализируемой среды и приведен в таблице 1.2.

Таблица 1.2

t °C	0	5	10	15	20	25	30	35	40	45	50
КРК, мг/дм ³	17,45	15,29	13,48	12,10	10,00	9,85	8,98	8,30	7,69	7,12	6,59

1.3.2 Пределы допускаемой основной абсолютной погрешности анализатора при измерении КРК при температуре анализируемой среды $(20,0\pm0,2)$ °C и температуре окружающего воздуха (20 ± 5) °C, мг/дм³ $\pm (0,05+0,04C)$, где C – здесь и далее по тексту – измеряемое значение КРК.

- 1.3.3 Пределы допускаемой дополнительной абсолютной погрешности анализатора при измерении КРК, обусловленной изменением температуры анализируемой среды, на каждые \pm 5 °C от нормальной (20,0 \pm 0,2) °C в пределах всего рабочего диапазона температур от 0 до плюс 50 °C, мг/дм³... \pm 0,012C.
- $1.3.5~ \Pi$ ределы допускаемой дополнительной абсолютной погрешности анализатора при измерении КРК при избыточном давлении анализируемой среды до $0.2~ M\Pi a, \, \text{мг/дм}^3 \dots \pm 0.1 C.$
- 1.3.6 Пределы допускаемой абсолютной погрешности анализатора при измерении КРК при температуре анализируемой среды, совпадающей с температурой градуировки и находящейся в диапазоне от плюс 5 до плюс 35 °C, и температуре окружающего воздуха (20 ± 5) °C, мг/дм³ $\pm (0.05 + 0.04C)$.
 - 1.3.7 Диапазон токового выхода, мА:
 - при работе с датчиками ДК-404 от 0 до 20;
 - при работе с датчиками ДК-404/1 от 4 до 20.

Функция преобразования измеренного значения С, мг/дм³, в выходной ток блока преобразовательного $I_{\rm вых}$, мА, при температуре окружающего воздуха (20 ± 5) °С на нагрузке, не превышающей 500 Ом, соответствует выражениям:

– для токового выхода 0-20 мА (датчик кислородный ДК-404):

$$I_{\text{bbl}} = \beta \cdot C;$$
 (1.1)

– для токового выхода 4-20 мА (датчик кислородный ДК-404/1):

$$I_{\text{Bblx}} = 4 + 16 \cdot \frac{\beta \cdot C}{20},\tag{1.2}$$

где $\beta = 1 \frac{\text{мA}}{\text{мг/дм}^3}$ в отградуированном датчике кислородном.

1.3.8 Пределы допускаемой основной абсолютной погрешности преобразования КРК в выходной ток анализатора при температуре анализируемой среды $(20,0\pm0,2)$ °C и температуре окружающего воздуха (20 ± 5) °C, мА..... $\pm(0,05+0,035I_{66tX}),$

где $I_{\rm gal}$ — здесь и далее по тексту — измеряемое значение выходного тока анализатора.

- 1.3.9 Пределы допускаемой дополнительной абсолютной погрешности преобразования КРК в выходной ток анализатора, обусловленной изменением температуры анализируемой среды, на каждые \pm 5 °C от нормальной ($20,0\pm0,2$) °C в пределах всего рабочего диапазона температур от 0 до плюс 50 °C, мА $\pm 0,012I_{\it GhZ}$.
- 1.3.10 Пределы допускаемой дополнительной абсолютной погрешности анализатора при преобразовании КРК в выходной ток анализатора, обусловленной изменением температуры окружающего воздуха, на каждые \pm 10 °C от нормальной (20 \pm 5) °C в пределах всего рабочего диапазона температур модуля токового выхода от минус 40 до плюс 50 °C, мА \pm (0,030 + 0,007 $I_{\rm Galix}$).
- 1.3.11 Пределы допускаемой абсолютной погрешности анализатора при преобразовании КРК в выходной ток анализатора при температуре анализируемой среды, совпадающей с температурой градуировки и находящейся в диапазоне от плюс 5 до плюс 35 °C, и температуре окружающего воздуха (20 ± 5) °C, мА $\pm (0.05 + 0.035I_{6bix})$.
- 1.3.12 Нестабильность показаний анализатора за время непрерывной работы 8 ч, мг/дм³, не более $\pm (0.025 + 0.02C)$.
- 1.3.13 Нестабильность выходного тока анализатора за время непрерывной работы 8 ч, мА, не более $\pm (0.025 + 0.017I_{\text{вых}})$.
- 1.3.14 Предел допускаемого значения времени установления показаний (выходного тока) анализатора при измерении КРК $t_{0.9}$, мин, не более 1.
- 1.3.15 Предел допускаемого значения времени установления показаний (выходного тока) анализатора при измерении КРК t_v , мин, не более 2.
- 1.3.17 При подключении к персональному компьютеру (ПК) анализатор осуществляет обмен информацией с ПК по интерфейсу RS-485.

1.4 Состав изделия

В состав анализатора входит блок преобразовательный и датчики кислородные ДК-404 или ДК-404/1 в количестве до шести штук.

1.5 Устройство и принцип работы

1.5.1 Общие сведения об анализаторе

Анализатор — шестиканальный, микропроцессорный, с преобразованием массовой концентрации растворенного кислорода в выходной ток, а также с ручным последовательным опросом каждого из каналов для вывода измеренного значения массовой концентрации растворенного кислорода (КРК) на индикатор.

Программное обеспечение (ПО) анализатора предназначено для обработки команд, задаваемых нажатием кнопок управления и вывода измеренного значения КРК на индикатор. При подключении анализатора к персональному компьютеру (ПК) ПО осуществляет обмен информацией с ПК по интерфейсу RS-485.

Может быть использован при создании распределенных систем мониторинга водных объектов.

Датчик кислородный включает в себя датчик с преобразователем КРК в напряжение, с независимой автоматической термокомпенсацией каждого датчика, и модуль токового выхода, преобразующий напряжение в выходной ток датчика кислородного.

Анализатор имеет шесть выходов с выходными унифицированными сигналами постоянного тока от 0 до 20 мА либо от 4 до 20 мА. Диапазон токового выхода каждого канала определяется типом подключенного датчика:

- от 0 до 20 мА для датчика кислородного ДК-404;
- от 4 до 20 мА для датчика кислородного ДК-404/1.

Диапазон токового выхода при выводе значения КРК на индикатор выбирается пользователем через опцию анализатора в соответствии с типом подключенного датчика отдельно для каждого из шести каналов.

Датчик и модуль токового выхода соединяются кабелем длиной 5 м (по заказу до 20 м).

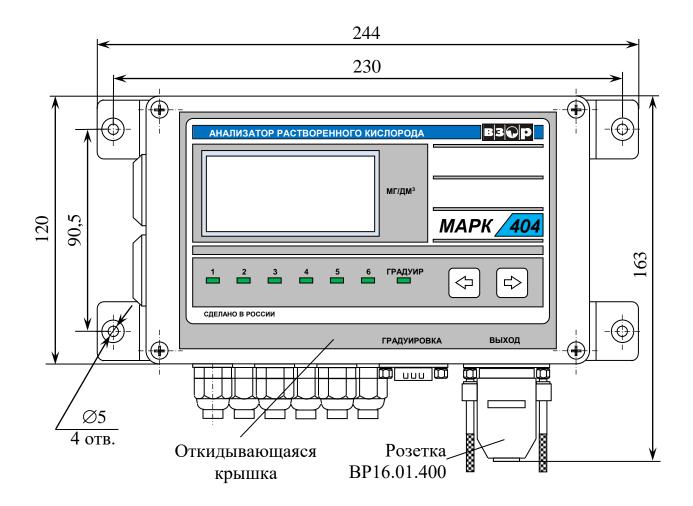
Модуль токового выхода соединяется с блоком преобразовательным вставкой кабельной ВК404.L длиной до 1000 м. Через вставку кабельную ВК404.L поступает питание от блока преобразовательного на датчик кислородный, а выходной ток датчика кислородного, зависящий от КРК в анализируемой среде, поступает на блок преобразовательный.

1.5.2 Принцип измерения кислорода

При измерении КРК используется амперометрический датчик, по принципу работы совпадающий с полярографической ячейкой закрытого типа.

Электроды погружены в раствор электролита, который отделен от анализируемой среды мембраной, проницаемой для кислорода, но непроницаемой для жидкости и паров воды. Кислород из анализируемой среды диффундирует через мембрану в тонкий слой электролита между катодом и мембраной и вступает в электрохимическую реакцию на поверхности катода, который поляризуется внешним напряжением, приложенным между электродами. При этом в датчике вырабатывается сигнал постоянного тока, который при фиксированной температуре пропорционален КРК в анализируемой среде.

Выходной сигнал датчика поступает на модуль токового выхода.


Выходной токовый сигнал с датчика кислородного, поступающий на вход блока преобразовательного, подается на выходной разъем анализатора.

1.5.3 Составные части анализатора

1.5.3.1 Блок преобразовательный

На *передней панели* блока преобразовательного в соответствии с рисунком 1.1 находятся:

- кнопки «← » и «→ » для переключения каналов индикации КРК в режиме измерения; для перехода в режим просмотра и изменения параметров анализатора и для изменения параметров анализатора;
- 7-сегментный индикатор для вывода на экран показаний КРК включенного канала индикации, индикации в режиме просмотра и изменения параметров анализатора и сообщений об ошибках;
- светодиодные индикаторы **«1»**, **«2»**, **«3»**, **«4»**, **«5»**, **«6»**, **«ГРАДУИР»** включенного канала индикации КРК.

Вид снизу

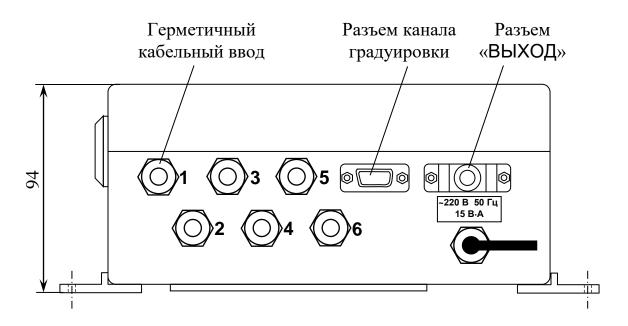


Рисунок 1.1 – Анализатор растворенного кислорода МАРК-404

На нижней панели корпуса блока преобразовательного находятся:

- ввод сетевого кабеля;
- разъем канала градуировки «**ГРАДУИР**»;
- шесть герметичных кабельных вводов для герметизации подсоединения кабельных вставок к клеммникам, расположенным под откидывающейся крышкой (маркировка токовых выходов показана условно).
- разъем «**ВЫХОД**» для подключения внешнего регистрирующего устройства с помощью розетки BP16.01.400. На контакты разъема выдаются токовые сигналы 0-20 мА либо 4-20 мА со всех шести каналов измерения КРК.

С канала градуировки токовый сигнал не выдается.

<u>Примечание</u> — Анализатор поставляется с установленной розеткой BP16.01.400. Заготовкой для розетки BP16.01.400 служит розетка DB15-F.

1.5.3.2 Датчик кислородный ДК-404, ДК-404/1

Датчик кислородный ДК-404 (ДК-404/1) состоит из датчика и модуля токового выхода. Основные детали датчика кислородного показаны на рисунке 1.2.

Основными функциональными элементами *датичка* являются электроды, представляющие собой платиновый катод и серебряный анод.

Платиновый катод впаян в торец стеклянной трубки, которая установлена во внутренний корпус датчика. На поверхность платинового катода нанесено специальное покрытие. Серебряный анод размещен на внутреннем корпусе датчика.

Электронная плата датчика закрыта корпусом из нержавеющей стали.

Узел мембранный М404 (далее — узел мембранный), состоящий из корпуса и мембраны, зафиксированной внутри с помощью винта и кольца уплотнительного, заполняется электролитом и наворачивается на внутренний корпус датчика.

Модуль токового выхода соединяется с датчиком кабелем. Кожух из нержавеющей стали защищает электронную плату модуля токового выхода. Шлиц градуировки расположен на торцевой поверхности модуля токового выхода.

Разъем на модуле токового выхода соединяется с разъемом на *вставке кабельной ВК404.L*. Второй конец вставки кабельной ВК404.L пропущен через один из шести герметичных кабельных вводов на корпусе блока преобразовательного и подключен к соответствующему *клеммнику* под откидывающейся крышкой блока преобразовательного.

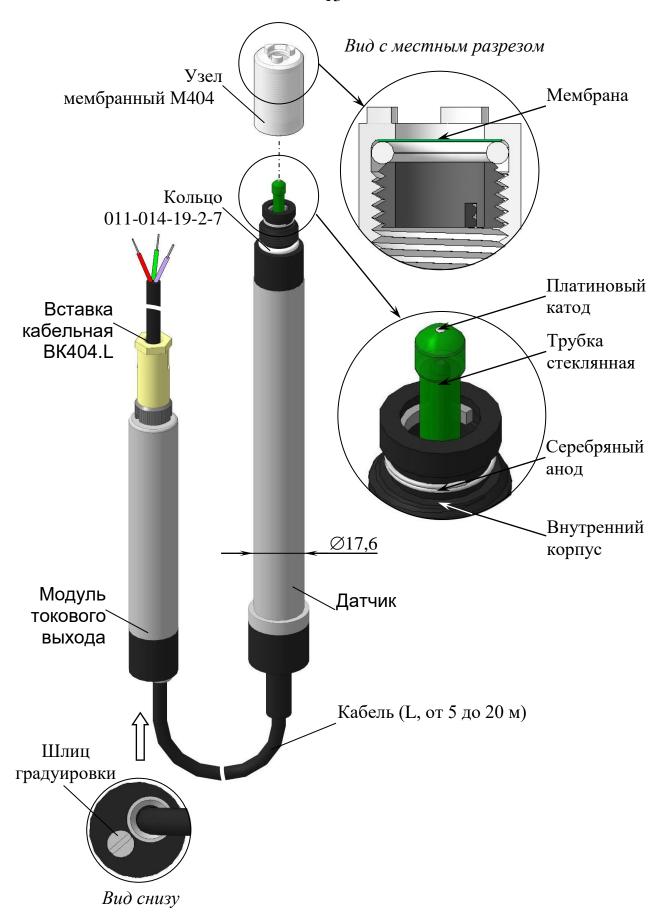


Рисунок 1.2 – Датчик кислородный ДК-404 (ДК-404/1)

1.5.4 Режимы просмотра и изменения параметров анализатора

1.5.4.1 Общие указания

В анализаторе во всех каналах кроме режима индикации КРК предусмотрены режимы просмотра и изменения параметров:

- режим просмотра и изменения типа токового выхода;
- режим просмотра и изменения времени усреднения;
- режим просмотра и изменения сетевого адреса;
- режим просмотра версии ПО на индикаторе блока преобразовательного;
- режим просмотра и изменения скорости обмена блока преобразовательного с ПК.

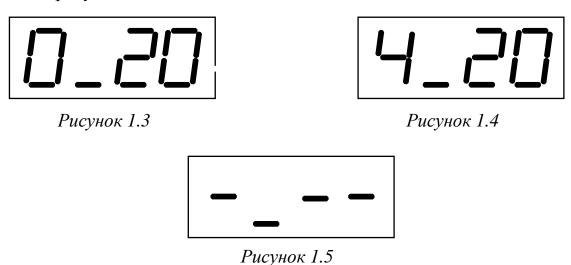
<u>Примечание</u> – В любом режиме анализатора на разъем «**ВЫХОД**» выдается измеренное значение по всем каналам, к которым подключены датчики кислородные, кроме канала «**ГРАДУИРОВКА**».

Переход в эти режимы осуществляется длинным (более 1 с) нажатием кнопок «← » или « ⇒ », сопровождающимся двойным звуковым сигналом.

Длинным нажатием кнопки « ⇒ » анализатор переводится из режима индикации КРК в режим просмотра типа токового выхода.

Длинным нажатием кнопки «← »анализатор переводится:

- из режима индикации КРК в режим просмотра времени усреднения показаний;
- из режима просмотра времени усреднения показаний в режим просмотра сетевого адреса;
 - из режима просмотра сетевого адреса в режим просмотра версии ПО;
- из режима просмотра версии ПО в режим просмотра скорости обмена блока преобразовательного с ПК.


Короткое нажатие кнопок «← » или «➡ » в режиме просмотра параметра, сопровождающееся одинарным звуковым сигналом, переводит анализатор из режима просмотра в режим изменения параметра, при этом изменяемое значение становится мигающим. Затем коротким нажатием этих кнопок производится изменение либо выбор нужного параметра.

Длинное нажатие кнопки « ⇒ » после установки нужного значения параметра переводит анализатор обратно в режим просмотра параметра. Измененное значение перестает быть мигающим. Еще одно длинное нажатие переводит анализатор из режима просмотра параметра в режим индикации КРК.

Длинное нажатие кнопки « ⇒ » после установки нужного типа токового выхода либо просмотра версии ПО переводит анализатор сразу в режим индикации КРК.

1.5.4.2 Режим просмотра и изменения типа токового выхода

Коротким нажатием кнопок «← » или « ⇒ » выбрать канал индикации. После длинного нажатия кнопки « ⇒ » появится один из экранов в соответствии с рисунками 1.3-1.5.

Выбрать тип токового выхода в соответствии с рисунками 1.3 или 1.4. Для отключения индикации КРК в выбранном канале выбрать экран в соответствии с рисунком.1.5.

При переходе в режим индикации КРК появится экран, например, в соответствии с рисунком 1.6.

Рисунок 1.6

Если индикация КРК канала отключена, при переходе в режим индикации КРК появится экран в соответствии с рисунком 1.7.

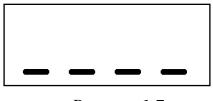


Рисунок 1.7

1.5.4.3 Режим просмотра и изменения времени усреднения

Для получения более стабильных показаний в анализаторе предусмотрено усреднение показаний за время от 0 до 9 мин. Время усреднения устанавливается одновременно для всех каналов анализатора.

На канал «**ГРАДУИР**» опция установки времени усреднения не распространяется.

Экран просмотра и изменения времени усреднения – в соответствии с рисунком 1.8.

Рисунок 1.8

Установить нужное значение времени усреднения.

1.5.4.4 Просмотр и изменение сетевого адреса

Сетевой адрес служит для идентификации данного анализатора при работе нескольких приборов, объединенных в сеть, по интерфейсу RS-485. Может принимать значения от «**00**» до «**255**». При работе вне сети сетевой адрес значения не имеет.

Экран просмотра и изменения сетевого адреса – в соответствии с рисунком 1.9.

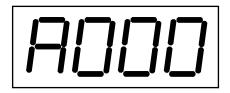


Рисунок 1.9

Установить нужный сетевой адрес.

1.5.4.5 Режим просмотра версии ПО на индикаторе блока преобразовательного

Экран, например, в соответствии с рисунком 1.10.

Рисунок 1.10

Версия ΠO заносится в память анализатора при прошивке микропроцессора.

1.5.4.6 Режим просмотра и изменения скорости обмена блока преобразовательного с ПК

Экран, например, в соответствии с рисунком 1.11.

Рисунок 1.11

Выбрать нужную скорость обмена из ряда: 2,4; 4,8; 9,6; 19,2; 38,4; 57,6 бит/с.

1.5.5 Индикация ошибок

Сообщение в соответствии с рисунком 1.12 появляется при отсутствии напряжения питания датчиков при любом выбранном канале индикации КРК. Сопровождается звуковым сигналом.

Сообщение в соответствии с рисунком 1.13 появляется при выбранном типе токового выхода 4-20 мА, если в выбранном канале ток датчика менее 4 мА. Сопровождается звуковым сигналом.

Если канал не выбран, индикатор включенного канала при токе датчика менее 3,97 мА мигает. Если индикация канала отключена (тип токового выхода не выбран), сигнализации нет.

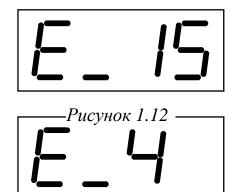


Рисунок 1.13

Сообщение в соответствии с рисунком 1.14 появляется, если в выбранном канале ток датчика более 30 мА. Сопровождается звуковым сигналом.

Если канал не выбран, индикатор включенного канала при токе датчика более 30 мА мигает. Если индикация канала отключена (тип токового выхода не выбран), сигнализации нет.

Рисунок 1.14

Сообщение в соответствии с рисунком 1.15 появляется при ошибке записи в память анализатора измененных параметров. Сопровождается звуковым сигналом.

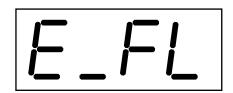


Рисунок 1.15

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Анализатор может использоваться для измерений в различных поверхностных и сточных водах, в том числе мутных и окрашенных, с наличием органических загрязнителей. По некоторым из компонентов, которые могут влиять на результаты измерений, допустимые концентрации приведены в п. 1.2.6.
- 2.1.2 Блок преобразовательный и модуль токового выхода должны располагаться таким образом, чтобы не было прямого попадания воды.

Модуль токового выхода выполнен в корпусе со степенью защиты IP65 по ГОСТ 14254-2015.

Датчик выполнен в корпусе со степенью защиты IP68 по ГОСТ 14254-2015.

2.1.3 При работе с анализатором оберегать датчик и блок преобразовательный от ударов, так как в их конструкции использовано стекло.

2.2 Указание мер безопасности

- 2.2.1 К работе с анализатором растворенного кислорода допускается персонал, изучивший настоящее руководство и правила работы с химическими растворами.
- 2.2.2 Обслуживающий персонал должен быть проинструктирован и иметь допуск к работе с электроустановками до 1000 В в соответствии с действующими правилами техники безопасности.
- 2.2.3 Блок преобразовательный должен размещаться в месте, не затрудняющем отключение анализатора от сети питания.
- 2.2.4 Подключение к сети питания должно осуществляться с помощью розетки, имеющей контакт заземления.
- 2.2.5 ЗАПРЕЩАЕТСЯ открывать крышку подключенного к сети питания блока преобразовательного.
- 2.2.6 ЗАПРЕЩАЕТСЯ эксплуатировать анализатор при открытой крышке блока преобразовательного.

2.3 Подготовка анализатора к работе и проведение измерений

2.3.1 Получение анализатора

При получении анализатора следует вскрыть упаковку, проверить комплектность и убедиться в сохранности упакованных изделий.

После пребывания анализатора на холодном воздухе необходимо выдержать его при комнатной температуре не менее 1 ч, после чего можно приступить к подготовке анализатора к работе.

2.3.2 Подготовка блока преобразовательного

2.3.2.1 Установка блока преобразовательного

Установить блок преобразовательный в помещении в соответствии с требованиями п. 1.2.7 в месте, не затрудняющем отключение анализатора от сети питания.

Разметка для крепления блока преобразовательного — в соответствии с рисунком 2.1.

Подвести сетевое питание ~220 В, 50 Гц.

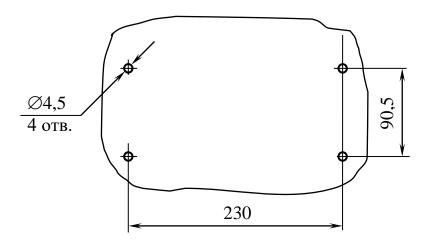


Рисунок 2.1 – Разметка отверстий для крепления блока преобразовательного

2.3.2.2 Подключение внешнего регистрирующего устройства

Схема подсоединения регистрирующего устройства к разъему «**ВЫХОД**» с помощью розетки BP16.01.400 — в соответствии с таблицей 2.1 и рисунком 2.2.

$\boldsymbol{\tau}$	سر ہ	2	7
1	'аблица	۷.	1

№ канала	№ контакта	Цепь	№ канала	№ контакта	Цепь
1	1	I_{eblX}	4	4	I_{eblX}
1	9	Корпус	4	12	Корпус
2	2	$I_{e \omega x}$	5	5	$I_{e \omega x}$
	10	Корпус	3	13	Корпус
3	3	$I_{\scriptscriptstyle extit{BblX}}$	6	6	$I_{e \omega x}$
	11	Корпус	O	14	Корпус

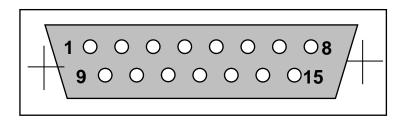


Рисунок 2.2 — Схема расположения контактов розетки BP16.01.400 (вид со стороны пайки контактов)

Подсоединить внешнее регистрирующее устройство в соответствии с таблицей 2.1, сняв соответствующие перемычки.

Входные каскады регистрирующего устройства должны иметь дифференциальный вход для приема токовых сигналов либо должны быть гальванически развязаны от общей заземляющей шины. Сопротивление изоляции должно быть не менее 40 МОм.

2.3.2.3 Подключение интерфейса RS-485

Подсоединение порта RS-485 ПК к блоку преобразовательному производится к контактам разъема «**ВЫХОД**» с помощью розетки BP16.01.400 в соответствии с таблицей 2.2.

Таблица 2.2

Конт.	Цепь		
15	SG		
13	(сигнальная земля)		
7	DAT+		
/	(Данные +)		
O	DAT-		
8	(Данные –)		

ВНИМАНИЕ: Соединение компьютера с блоком преобразовательным производить при отключенном питании компьютера и блока преобразовательного!

Параметры конфигурации СОМ-порта ПК:

- скорость обмена выбирается при настройке анализатора (п. 1.5.4);
- количество бит данных 8;
- количество «СТОП-БИТ» 1;
- контроль паритета ЧЕТНОСТЬ (EVEN).

2.3.3 Подготовка датчика кислородного

2.3.3.1 Общие сведения

Датчик (в комплекте анализатора) поставляется в сухом виде и при получении его необходимо заполнить электролитом из комплекта поставки в соответствии с п. 2.3.3.2.

Подключить разъем модуля токового выхода с помощью кабельной вставки ВК404.L к одному из каналов блока преобразовательного в соответствии с п. 2.3.3.3.

Включить анализатор.

Установить в соответствии с п. 1.5.4 во всех каналах тип токового выхода, соответствующий типу подключенного датчика:

- для датчиков кислородных ДК-404 0-20 мА;
- $-\,$ для датчиков кислородных ДК-404/1 $-\,$ 4-20 мА.

Отключить индикацию КРК в каналах, где датчики кислородные не установлены, либо установить тип токового выхода 0-20 мА.

Погрузить датчик мембраной вниз на 8 ч в дистиллированную воду.

Провести проверку нижней точки диапазона измерений и градуировку датчика кислородного по атмосферному воздуху в соответствии с пп. 2.3.4 и 2.3.5.

Произвести указанные операции с каждым из датчиков, входящих в комплект анализатора.

2.3.3.2 Заливка электролита ЭК

При выполнении данной операции используются электролит ЭК (далее электролит) и шприц, входящие в комплект инструмента и принадлежностей BP16.02.600 и поставляемые с анализатором.

- 1 ВНИМАНИЕ: Электролит ЭК имеет щелочную реакцию! СОБЛЮДАТЬ меры предосторожности, приведенные в приложении Г!
- 2 ВНИМАНИЕ: Заполнение электролитом ЭК датчика и его сборку проводить в перчатках над поддоном из химически стойкого материала!

Состав электролита ЭК: КСІ, хч — 14 г; КОН, хч — 0,2 г; трилон Б — 0,15 г; вода дистиллированная до 0,1 дм 3 . Раствор профильтровать.

Для заполнения датчика электролитом в соответствии с рисунком 2.3 следует:

- расположить датчик вертикально, мембранным узлом вниз;
- отвернуть от внутреннего корпуса мембранный узел;
- залить с помощью шприца электролит в мембранный узел на 2/3 от объема;
- навернуть мембранный узел на внутренний корпус;
 - ополоснуть датчик проточной водой.

Рисунок 2.3

ВНИМАНИЕ: Блок преобразовательный должен быть отключен от сети питания!

Подключение датчиков кислородных к блоку преобразовательному производится с помощью вставок кабельных ВК404.L (в дальнейшем вставка кабельная), рисунок 2.4.



Рисунок 2.4 – Вставка кабельная ВК404.L

Отвернуть четыре винта крепления откидывающейся крышки блока преобразовательного и открыть доступ к клеммникам DG142V-03P, расположенным на плате в соответствии с рисунком 2.5.

Один конец вставки кабельной пропустить через герметичный кабельный ввод на нижней поверхности блока преобразовательного, предварительно удалив заглушку из герметичного кабельного ввода, и подключить жилы кабельной вставки к клеммнику DG142V-03P в соответствии с таблицей 2.3.

Таблица 2.3

Маркировка жил	№ контакт	Поп	
кабельной вставки	клеммника DG142V-03P	розетки РС4ТВ	Цепь
2	2	2	I_{ex}
3	1	3	+15 B
4	3	4	GND

При работе анализатора неиспользуемые герметичные кабельные вводы должны быть закрыты заглушками.

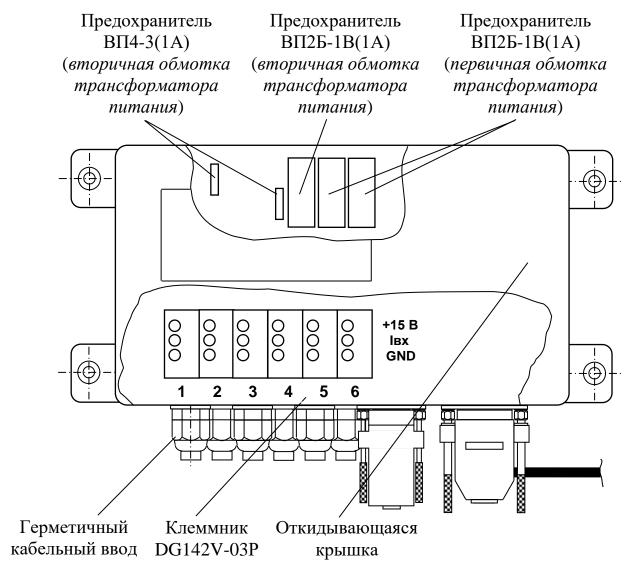


Рисунок 2.5— Схема расположения клеммников DG142V-03P и предохранителей под откидывающейся крышкой блока преобразовательного

Второй конец кабельной вставки подключить к модулю токового выхода розеткой РС4ТВ, установленной на кабельной вставке в соответствии с рисунком 2.6 и таблицей 2.3.

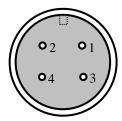


Рисунок 2.6— Схема расположения контактов розетки PC4TB (вид со стороны пайки контактов)

Погрузить датчик мембраной вниз на 8 ч в дистиллированную воду.

2.3.4 Проверка нижней точки диапазона измерения

Приготовить бескислородный («нулевой») раствор. Для этого следует:

- залить в сосуд $100~{\rm cm}^3$ дистиллированной воды, комнатной температуры;
 - добавить 1 г натрия сернистокислого и перемешать;
- добавить 2 см³ раствора кобальта хлористого 6-водного массовой концентрацией 2 г/дм³;
 - перемешать стеклянной палочкой.

Срок хранения готового раствора в плотно закрытой посуде 1 месяц с момента изготовления.

<u>Примечание</u> — Комплект химических реактивов для приготовления «нулевого» раствора BP20.20.000 поставляется по отдельной заявке.

Подключить разъем модуля токового выхода кабелем градуировки К404.1, входящим в комплект анализатора, к разъему канала «**ГРАДУИР**» либо к любому свободному каналу и включить кнопками « » или « », расположенными на передней панели анализатора, индикацию этого канала.

Погрузить датчик кислородный в приготовленный раствор в соответствии с рисунком 2.7. Встряхнуть его в растворе, чтобы исключить скапливание пузырьков воздуха на мембране.

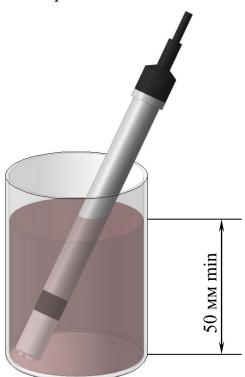


Рисунок 2.7 — Положение датчика при проверке нижней точки диапазона измерения

Через 10 мин снять показания анализатора. Они должны находиться в пределах от минус 0.050 до плюс 0.050 мг/дм³.

Если показания не опускаются до указанного значения, сделать несколько энергичных встряхиваний датчика, не вынимая его из раствора, чтобы удалить пузырьки воздуха с мембраны.

Если в результате вышеуказанных действий не удается получить требуемые показания, то это может свидетельствовать либо о плохом качестве «нулевого» раствора (плохих реактивах), либо о неисправности анализатора (раздел 2.5 «Возможные неисправности и методы их устранения»).

Произвести указанные операции с каждым из датчиков кислородных, входящих в комплект анализатора.

Проверку нижней точки диапазона измерения *рекомендуется* производить при появлении сомнений в исправности анализатора.

2.3.5 Градуировка датчика кислородного

Градуировку датчика кислородного по атмосферному воздуху следует проводить:

- при вводе в эксплуатацию после получения либо после длительного хранения;
 - один раз в неделю;
 - при проведении поверки;
 - после замены электролита или узла мембранного.

Данную операцию можно проводить:

- в помещении при комнатной температуре от плюс 5 до плюс 35 °C;
- в водоеме при температуре, равной температуре анализируемой воды.

В этом случае погрешность измерения уменьшится, так как исключается дополнительная погрешность, обусловленная изменением температуры анализируемой воды. Градуировка датчика кислородного в водоеме проводится при температуре анализируемой воды от плюс 5 до плюс 35 °C с помощью устройства для градуировки К-404, поставляемого по отдельной заявке.

2.3.5.1 Градуировка датчика кислородного по атмосферному воздуху в помещении

Градуировка датчика кислородного производится в атмосферном воздухе при относительной влажности 100 % и комнатной температуре от плюс 15 до плюс 35 °C.

Блок преобразовательный и модуль токового выхода до градуировки должны быть выдержаны при комнатной температуре не менее 1 ч.

Модуль токового выхода датчика кислородного подключить кабелем градуировки К-404.1 к каналу «**ГРАДУИР**». Выбрать индикацию КРК канала «**ГРАДУИР**».

Для выполнения градуировки произвести следующие операции:

- **а)** полностью погрузить датчик в дистиллированную воду комнатной температуры на время не менее 20 мин;
- **б)** стряхнуть капли воды с мембраны датчика и протереть весь датчик сухой тканью. Поместить датчик в коническую колбу КН-100-19/26 или аналогичную, на дно которой налита вода в количестве 20-30 см³ в соответствии с рисунком 2.8. Колбу расположить наклонно под углом 15-45° к горизонтали.

Рисунок 2.8 – Положение датчика в колбе при градуировке по атмосферному воздуху

<u>Примечание</u> — Допускается проводить градуировку по атмосферному воздуху без конической колбы. Датчик ополоснуть дистиллированной водой комнатной температуры, стряхнуть капли воды с мембраны и разместить под углом 15-30° к горизонтали.

в) через 10 мин измерить и зафиксировать по барометру атмосферное давление P_{amm} , кПа. Измерить температуру окружающего воздуха термометром с погрешностью \pm 0,2 °C;

г) вращая шлиц градуировки, расположенный на торцевой поверхности модуля токового выхода, установить с точностью \pm 0,5 % показания $C_{\it cpad}$, мг/дм³, контролируя их по индикатору блока преобразовательного, равными

$$C_{cpao} = Co_2(t) \cdot \frac{P_{amm}}{101,325},$$

где $Co_2(t)$ — значение КРК для измеренной температуры воздуха, взятое из таблицы Б.1, мг/дм³;

 P_{amm} – атмосферное давление на момент градуировки, кПа.

Если соответствующее значение выставить, не удается, следует обратиться к разделу 2.5 «Возможные неисправности и методы их устранения».

После градуировки каждого из датчиков кислородных, входящих в комплект анализатора, анализатор готов к работе.

2.3.5.2 Градуировка датчика кислородного по атмосферному воздуху в водоеме с использованием устройства для градуировки К-404 – в соответствии с п. 2.4 руководства по эксплуатации ВР16.04.000РЭ.

2.3.6 Подготовка к проведению измерений

При подготовке используется комплект монтажных частей BP16.02.400, состоящий из держателя датчика BP16.02.410, пенала модуля токового выхода BP16.02.420 и отвода (водоотвод 1/2 дюйма), и входящий в комплект поставки.

Условная схема размещения составных частей анализатора приведена на рисунке 2.9.

При выборе места расположения датчиков следует учесть, что для правильного измерения КРК необходимо движение воды относительно датчика со скоростью не менее 5 см/с.

Установить и закрепить модуль токового выхода датчика кислородного в условиях, соответствующих п. 1.2.7, используя пенал модуля токового выхода (в дальнейшем пенал). Габаритные и присоединительные размеры пенала — в соответствии с рисунком 2.10.

Для крепления пенала необходимо снять с трубы стойки с защелкой, закрепить их снизу под навесом либо на вертикальной или горизонтальной поверхности и установить трубу на стойки с защелкой.

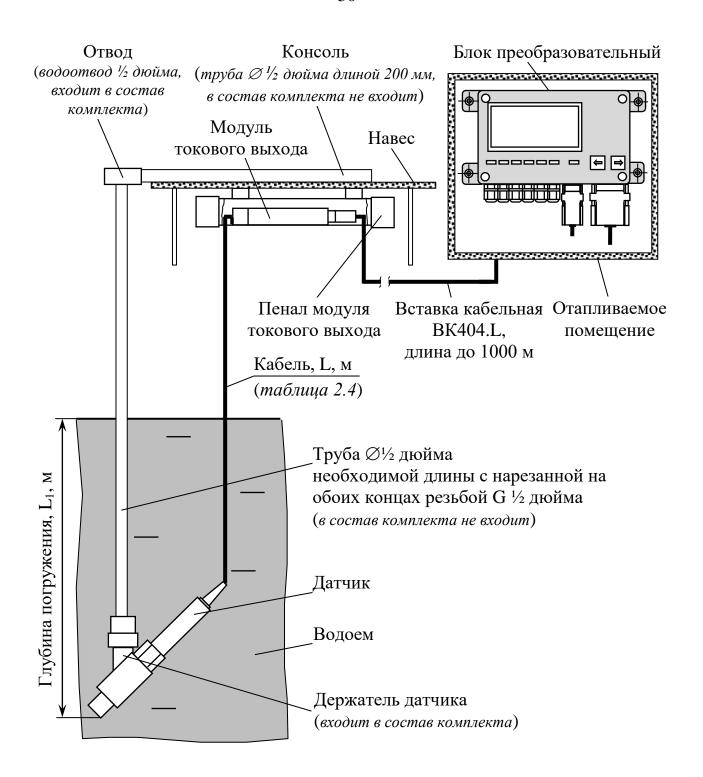


Рисунок 2.9 – Условная схема размещения составных частей анализатора

Таблица 2.4

Тип кабеля, установленного на датчик	Глубина погружения L_1 , м, не более
Кабель, L = 5 м	5
Кабель удлиненный, L до 20 м	20
(устанавливается на датчик по специальному заказу)	20

ВНИМАНИЕ: Прорези для кабеля ДОЛЖНЫ НАХОДИТЬСЯ СНИЗУ трубы во избежание попадания капель воды!

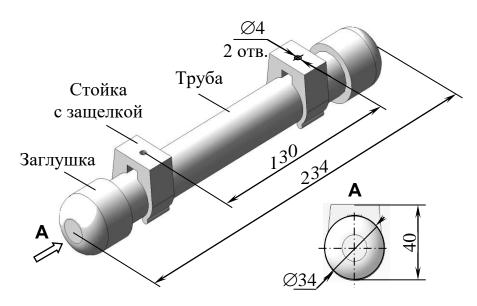


Рисунок 2.10 — Габаритные и присоединительные размеры пенала модуля токового выхода

Соединить с помощью кабельных вставок необходимой длины модуль токового выхода каждого датчика кислородного и соответствующий канал измерения блока преобразовательного.

Установить датчик в держатель датчика, в соответствии с рисунком 2.11, для этого следует ослабить гайку уплотнения, установить датчик и завернуть гайку. Развернуть тройник держателя датчика, чтобы при установке в точке измерения он находился под углом 45° к вертикали.

Установить и закрепить датчики в местах, где требуется контроль КРК. Датчики должны быть погружены в воду полностью.

Рисунок 2.11 – Держатель датчика с установленным датчиком кислородным

2.3.7 Проведение измерений

После установки датчиков кислородных в местах контроля КРК и проведения градуировки по атмосферному воздуху можно снять установившиеся показания анализатора.

Датчик кислородный позволяет осуществлять измерение КРК на глубинах до 20 м при поставке по специальному заказу с удлиненным кабелем (таблица 2.4).

ВНИМАНИЕ! При работе с анализатором:

- транспортировать датчик кислородный, заполненный электролитом, необходимо при температуре окружающего воздуха выше нуля во избежание замерзания электролита;
- при переносе блока преобразовательного с холодного воздуха в теплое помещение необходимо перед включением выдержать его при комнатной температуре не менее 1 ч для испарения сконденсированной на поверхности разъемов влаги.

2.3.8 Расчет абсолютного значения КРК при измерениях в соленой воде

Расчет производится по формуле

$$C = \alpha \cdot C_{u_{3M}}$$

где α – поправочный коэффициент;

 $C_{u_{3M}}$ – измеренное значение КРК, мг/дм³.

Значение α определяется формулой

$$\alpha=1-A\cdot\varepsilon$$
,

где A – содержание солей, г/дм³;

 ε – коэффициент, приведенный в таблице 2.5.

Пример расчета КРК с учетом поправочного коэффициента α :

Пусть измеренное значение КРК 5,6 мг/дм³, A=10 г/дм³. t=20 °C, следовательно ε =0,0053; тогда

$$\alpha = 1 - 10.0,0053 = 0.947;$$

$$C=0.947\cdot 5.6=5.30.$$

Таблица	2	5 —	Π	оправочные коэффициенты
1 aonana	∠.	J	11	UNDUGUTAGIE KUJUMUMUMEAINOI

t, °C	ε								
0,0	0,0063	11,0	0,0057	21,0	0,0052	31,0	0,0048	41,0	0,0043
1,0	0,0063	12,0	0,0057	22,0	0,0052	32,0	0,0047	42,0	0,0042
2,0	0,0062	13,0	0,0057	23,0	0,0051	33,0	0,0047	43,0	0,0042
3,0	0,0062	14,0	0,0055	24,0	0,0050	34,0	0,0046	44,0	0,0041
4,0	0,0060	15,0	0,0055	25,0	0,0050	35,0	0,0046	45,0	0,0045
5,0	0,0060	16,0	0,0055	26,0	0,0049	36,0	0,0045	46,0	0,0040
6,0	0,0060	17,0	0,0054	27,0	0,0049	37,0	0,0045	47,0	0,0040
7,0	0,0060	18,0	0,0054	28,0	0,0049	38,0	0,0044	48,0	0,0039
8,0	0,0058	19,0	0,0053	29,0	0,0048	39,0	0,0044	49,0	0,0039
9,0	0,0058	20,0	0,0053	30,0	0,0048	40,0	0,0043	50,0	0,0038
10,0	0,0058								

<u>Примечание</u> — Данная методика поправки на солесодержание разработана на основе данных, приведенных в Международном стандарте ISO 5814 Качество воды. Определение растворенного кислорода методом электрохимического датчика.

2.3.9 Пересчет показаний C, мг/дм³, в показания Z, % O_2

Пересчет производится по формуле

$$Z = \frac{C}{Co_2} \cdot 100\%,$$

где C — показания анализатора, мг/дм³;

 Co_2 — найденное по таблице Б.1 значение растворимости кислорода воздуха в дистиллированной воде для определенной заранее температуры анализируемой среды, мг/дм³.

2.4 Проверка технического состояния

Показателем нормального технического состояния анализатора является выполнение следующих условий:

- 1) при проверке нижней точки диапазона измерения для каждого из датчиков кислородных, входящих в комплект анализатора, показания блока преобразовательного опускаются до значений в пределах от минус 0,050 до плюс 0,050 мг/дм³ (п. 2.3.4);
- 2) при градуировке по атмосферному воздуху с помощью шлицов градуировки устанавливаются необходимые показания блока преобразовательного для каждого из датчиков кислородных, входящих в комплект анализатора (п. 2.3.5).

2.5 Возможные неисправности и методы их устранения

2.5.1 Характерные неисправности анализатора и методы их устранения приведены в таблице 2.6.

При возникновении неисправностей, указанных в таблице 2.6, следует выполнить действия, рекомендуемые в графе «методы устранения» (смотри нижеследующие пункты и рисунки 1.1, 2.11).

Таблица 2.6

Неисправность	Вероятная причина	Методы устранения		
Анализатор не включа-	Неисправен сетевой	Проверить сетевой ка-		
ется	кабель.	бель		
	Вышли из строя	п. 3.3.6 Замена сетевых		
	предохранители.	предохранителей.		
При градуировке не уда-	Вытек электролит	п. 2.3.3.2. Залить элек-		
ется выставить необхо-		тролит		
димые показания инди-	Загрязнена мембрана	п. 3.3.3. Очистить мем-		
катора.		брану		

Продолжение таблицы 2.6

Продолжение таблицы 2.6			
Неисправность	Вероятная причина	Методы устранения	
При градуировке не удается выставить необходимые показания индикатора. При градуировке либо при измерениях на индикаторе появилось сообщение Е_30 .	Дефекты мембраны	п. 3.3.4. Заменить мембранный узел	
На индикаторе появилось сообщение Е_4 (при типе токового выхода 4-20 мА ток датчика менее 3,97 мА)	Неправильно установлен тип токового выхода (установлен 4-20 мА для датчика ДК-404).	Установить тип токового выхода 0-20 мА	
	Отсутствует розетка BP16.01.400 либо отсутствует контакт розетки BP16.01.400 с блоком преобразовательным	Установить розетку ВР16.01.400. Проверить и обеспечить надежное соединение розетки ВР16.01.400 с блоком преобразовательным	
	Неправильное под- ключение внешнего регистрирующего устройства Неисправна розетка	пп. 2.3.2.3, 2.3.3.3. Проверить правильность соединения Ремонт в заводских	
	BP16.01.400	условиях	
На индикаторе появилось сообщение E_FL	Ошибка записи в па- мять анализатора из- мененных параметров.	При часто появляющем- ся сообщении – ремонт в заводских условиях	
На индикаторе появилось сообщение E_15 (отсутствие напряжения питания датчиков)	Неисправность одного из датчиков либо блока преобразовательного	Отключить поочередно все датчики. Ремонт неисправного датчика в заводских условиях. Если после отключения всех датчиков, проверки и замены сетевых предохранителей (ВП2Б-1В(1А)) ошибка сохранилась, то ремонт блока преобразовательного в заводских условиях.	

Продолжение таблицы 2.6

Неисправность	Вероятная причина	Методы устранения
Длительное время реагирования на изменение концентрации кислорода при установленном времени усреднения показаний, равном нулю	Загрязнена мембрана	п. 3.3.3. Очистить мембрану
Вытекает электролит	Разрыв мембраны	п. 3.3.4. Заменить мембранный узел
Велики показания в нулевом растворе	Разрыв мембраны	п. 3.3.4. Заменить мем- бранный узел
	Загрязнение электро-лита	п. 3.3.4. Заменить электролит
	Попала влага внутрь блока преобразова- тельного	Ремонт в заводских условиях
	Попала влага на платы модуля токового выхода либо на плату датчика кислорода	

При выявлении неуказанных неисправностей или невозможности устранения неисправности своими силами следует обратиться в ООО «ВЗОР».

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Меры безопасности

Все виды технического обслуживания (далее – ТО) выполняются квалифицированным оперативным персоналом, изучившим настоящее руководство по эксплуатации и меры безопасности при работе с химическими реактивами.

3.2 Общие указания

Техническое обслуживание для анализатора, находящегося в эксплуатации, включает в себя операции нерегламентированного и регламентированного обслуживания.

В состав нерегламентированного ТО входят:

- эксплуатационный уход;
- содержание анализатора в исправном состоянии, включая устранение неисправностей;
 - своевременная замена изношенных узлов и деталей.

Все обнаруженные при нерегламентированном ТО неисправности в работе анализатора должны быть устранены силами оперативного персонала.

Регламентированное ТО реализуется в форме плановых ТО, объем и периодичность которых приведены в таблице 3.1.

Обнаруженные при ТО дефекты узлов и деталей, которые при дальнейшей эксплуатации оборудования могут нарушить его работоспособность или безопасность условий труда, должны немедленно устраняться. При невозможности устранения дефектов своими силами следует подготовить анализатор, упаковать и отправить его предприятию-изготовителю для осуществления ремонта. Таблииа 3.1

№ пп.	Наименование работы	Периодичность ТО				
РЭ		один раз	ежегодно			
		в неделю				
3.3.1	Внешний осмотр	*	+			
3.3.2	Проверка функционирования анализатора	*	+			
3.3.3	Чистка составных частей анализатора	*	+			
3.3.4	Замена:					
	– электролита ЭК;	*	+			
	 узла мембранного. 	*	*			
3.3.5	Замена кольца уплотнительного	*	*			
3.3.6	Замена сетевых предохранителей	*	*			
2.3.4	Проверка нижней точки диапазона измерений	*	+			
2.3.5	Градуировка датчика кислородного по атмосфер-	+				
	ному воздуху	+	+			
Услові	Условные обозначения: «+» – ТО проводят;					
	«*» – ТО проводят при необходим	ости.				

3.3 Техническое обслуживание составных частей

3.3.1 Внешний осмотр

При проведении внешнего осмотра анализатора проверяют:

- отсутствие механических повреждений датчика кислородного и блока преобразовательного;
 - целостность разъемов, кнопок, соединительных кабелей;
 - правильность и четкость маркировки.

3.3.2 Чистка составных частей анализатора

3.3.2.1 Чистку наружной поверхности блока преобразовательного, в случае загрязнения, производить с использованием мягких моющих средств с последующим очищением мягкой тканью, смоченной в дистиллированной воде.

ПРЕДОСТЕРЕЖНИЕ: НЕ ДОПУСКАТЬ попадания влаги внутрь блока преобразовательного!

<u>Примечание</u> — В качестве мягкого моющего средства можно использовать мыльный раствор: 40-50 г стружки мыла по ГОСТ 28546-2002 растворить в 300-400 см³ горячей воды.

- 3.3.2.2 Для очистки мембраны датчика ее можно протереть ваткой, смоченной в спирте. Можно также погрузить датчик мембраной в слабый раствор (2 %) серной кислоты на время около 1 ч, после чего промыть его в проточной воде.
- 3.3.2.3 Очистка платинового электрода, в случае необходимости, осуществляется сначала мягкой тканью, смоченной спиртом, затем сухой тканью.

ВНИМАНИЕ: НЕ ЧИСТИТЬ ЭЛЕКТРОДЫ АБРАЗИВНЫМИ МА-ТЕРИАЛАМИ!

После очистки электродов промыть датчик в дистиллированной воде.

3.3.3 Проверка функционирования анализатора

Для проведения проверки функционирования анализатора в различных режимах работы включают анализатор и проверяют работоспособность кнопок «⟨⇔⟩, « ⇒».

Результат проверки считают удовлетворительным, если при нажатии кнопки «

» или «

» переключается канал индикации.

3.3.4 Замена узла мембранного и электролита ЭК

ВНИМАНИЕ: При сборке или разборке датчика проверить состояние кольца уплотнительного 011-014-19 и ЗАМЕНИТЬ его при необходимости в соответствии с п. 3.3.5!

В процессе эксплуатации количество электролита в датчике может уменьшаться из-за вытекания через микроотверстия в мембране либо при

нарушении герметичности датчика, а именно при механическом повреждении (трещинах, проколах, вытягивании) мембранного узла.

Признаки повреждений мембраны:

- вытекание электролита;
- нестабильность показаний анализатора;
- большие показания в нулевом растворе;
- большое время реагирования при измерении КРК.

Узел мембранный входит в комплект запасных частей ВР16.12.500.

Электролит ЭК входит в комплект инструмента и принадлежностей ВР16.02.600.

Узел мембранный изображен на рисунке 3.1.

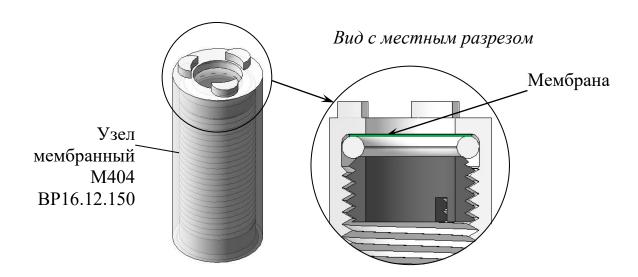


Рисунок 3.1 – Узел мембранный М404

Для замены электролита и узла мембранного следует:

- расположить датчик вертикально мембраной вниз;
- отвернуть от внутреннего корпуса мембранный узел;
- ополоснуть датчик дистиллированной водой;
- заполнить датчик электролитом в соответствии с п. 2.3.3.2 и установить при необходимости новый мембранный узел;
 - выдержать датчик на воздухе в течение не менее 1 ч;
 - провести проверку нижней точки диапазона измерения (п. 2.3.4);
- провести градуировку датчика кислородного по атмосферному воздуху (п. 2.3.5).

3.3.5 Замена кольца уплотнительного

В конструкции датчика используется кольцо 011-014-19-2-7 ГОСТ 18829-2017 (рисунок 1.2), которое имеет ограниченный ресурс. Замену кольца 011-014-19-2-7 производить в случае его повреждения. Кольцо 011-014-19-2-7 входит в комплект запасных частей ВР16.12.500.

3.3.6 Замена сетевых предохранителей

В первичной обмотке трансформатора питания установлены два предохранителя плавких ВП2Б-1В(1А) с номинальным током срабатывания 1 А.

Замена предохранителей ВП2Б-1В(1А) производится после устранения неисправностей, вызвавших разрушение предохранителей.

ВНИМАНИЕ: БЛОК ПРЕОБРАЗОВАТЕЛЬНЫЙ ДОЛЖЕН БЫТЬ ОТКЛЮЧЕН ОТ СЕТИ ПИТАНИЯ!

Расположение предохранителей под откидывающейся крышкой блока преобразовательного – в соответствии с рисунком 2.5.

4 КОМПЛЕКТ ПОСТАВКИ

4.1 Комплект поставки анализатора соответствует таблице 4.1.

Таблица 4.1

	Наименование	Обозначение	Количество
1	Блок преобразовательный	BP16.01.000	1
	(с розеткой ВР16.01.400)		
2	Датчик кислородный:		6*
	– ДК-404;	BP16.02.000	
	<i>–</i> ДК-404/1.	BP16.02.000-01	
3	Устройство для градуировки К-404	BP16.04.000	1**
4	Кабель градуировки К404.1	BP16.01.910	1
5	Кабель поверочный К404.0,5	BP16.01.920	1
6	Руководство по эксплуатации	ВР16.00.000РЭ	1
	* Тип датчиков и количество по согл	асованию с заказчи	ком.
	** По согласованию с заказчиком.		

^{4.2} Комплект поставки каждого датчика кислородного соответствует таблице 4.2.

Таблица 4.2

Наименование		Обозначение	Количество
1 Датчик кислородный:			1
– ДК-404;		BP16.02.000	
— ДК-404/1.		BP16.02.000-01	
2 Вставка кабельная ВК404.L**		BP16.02.300	1*
3 Комплект монтажных частей:		BP16.02.400	1
держатель датчика	– 1 шт.;	BP16.02.410	
 пенал модуля токового выхода 	– 1 шт.;	BP16.02.420	
– отвод (водоотвод 1/2 дюйма)	– 1 шт.	_	
4 Комплект запасных частей:		BP16.12.500	1
узел мембранный M404	– 2 шт.;	BP16.12.150	
– кольцо 011-014-19-2-7 ГОСТ 18829-2017	– 1 шт.	_	
5 Комплект инструмента и принадлежно		BP16.02.600	1
– электролит ЭК (емкость 50 см ³)	– 1 шт.;	BP47.05.100	
отвертка 4 мм	– 1 шт.;	_	
 шприц 5 см³ 	− 1 шт.	_	
6 Розетка РС4ТВ с кожухом			1***

^{*} По согласованию с заказчиком.

^{**} Длина L по согласованию с заказчиком.

^{***} Поставляется при отсутствии в комплекте поставки анализатора вставки кабельной ВК404.L.

4.3 Перечень изделий, применяемых с анализатором и поставляемых по отдельной заявке, приведен в таблице 4.3.

Таблица 4.3

Наименование	Обозначение
Комплект химических реактивов	BP20.20.000
для приготовления «нулевого» раствора:	
– флакон с натрием сернистокислым – 1 шт.;	_
(масса нетто 12,5 г)	
 флакон с кобальтом хлористым 1 шт. 	_
6-водным (масса нетто 1 г)	

5 СРЕДСТВА ИЗМЕРЕНИЯ, ИНСТРУМЕНТ И ПРИНАД-ЛЕЖНОСТИ

Для проведения работ по контролю и текущему обслуживанию анализатора требуются следующие инструменты и принадлежности, не входящие в комплект поставки анализатора:

- термометр с ценой деления не более 0,2 °C;
- барометр-анероид БАММ-1;
- натрий сернистокислый ГОСТ 195-77, ч.д.а.;
- кобальт хлористый 6-водный ГОСТ 4525-77, ч.д.а.;
- колба КН-100-19/26.

6 МАРКИРОВКА

На передней панели анализатора нанесено наименование прибора и товарный знак.

На боковой поверхности анализатора укреплена табличка, на которой нанесены:

- наименование, тип, модель, модификация изделия;
- товарный знак предприятия-изготовителя;
- наименование страны-изготовителя;
- знак об утверждении типа;
- порядковый номер анализатора;
- год выпуска.

На нижней поверхности анализатора вблизи ввода сетевого кабеля укреплена табличка, на которой нанесены род тока, напряжение и потребляемая мощность анализатора.

На упаковочной коробке нанесены манипуляционные знаки: «Хрупкое. Осторожно», «Беречь от влаги» и «Верх». На упаковочной коробке наклеена этикетка, содержащая наименование и условное обозначение анализатора, дату упаковки, товарный знак, телефоны, адрес и наименование предприятия-изготовителя.

7 УПАКОВКА

Составные части анализатора укладываются в картонную коробку в полиэтиленовых пакетах.

В отдельные пакеты укладываются:

- блок преобразовательный;
- каждый датчик кислородный ДК-404 (ДК-404/1), входящий в комплект поставки;
 - комплект инструмента и принадлежностей;
 - комплекты запасных частей к датчикам;
 - комплекты монтажных частей;
 - руководство по эксплуатации и упаковочная ведомость.

Пространство между пакетами и стенками коробки заполняется амортизационным материалом.

8 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ

Анализат	ор растворенного	кислорода М	ЛАРК-404 Т <u>У</u>	7 26.51.53-009-39232169-2018
№				
	сислородные			
ДК-404 М	<u>o</u>			
	№			
-	ООО «ВЗОР» сог ической документ	_	ованиям, пред	цусмотренным в действую-
	должность	личная	подпись	расшифровка подписи
«	»»	20	Γ.	
	ор растворенного	•		7 26.51.53-009-39232169-2018
	сислородные			
	<u>0</u>			
ДК-404/1				
ственных		ствующей т		ми требованиями государ- документацией и признан
Начальни	к ОТК			
М.Г	Ι.			
	личная подпі	ись	расшифров	ка подписи
	« _ »	2	0г.	

10 СВЕДЕНИЯ О ПОВЕРКЕ (КАЛИБРОВКЕ)

Для применения в сфере государственного регулирования обеспечения единства измерений анализаторы при выпуске из производства, после ремонта и при эксплуатации должны подвергаться поверке. Поверку анализаторов осуществляют органы Государственной метрологической службы или аккредитованные в установленном порядке юридические лица и индивидуальные предприниматели.

Поверка производится в соответствии с документом «Анализатор растворенного кислорода МАРК-404. Методика поверки», приложение А.

Межповерочный интервал 1 год.

ВНИМАНИЕ: Датчики кислородные ДК-404 и ДК-404/1 принимаются от пользователей для проведения поверки анализаторов (в том числе для ремонта) только в очищенном от грязи виде!

Таблица 10.1

Поверка	Дата	Должность,	Подпись,	Срок очередной
(калибровка)	проведения	ОИФ	печать	поверки
				(калибровки)
Поверка	//			/
1				

11 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 11.1 Изготовитель гарантирует соответствие анализатора требованиям технических условий при соблюдении потребителем условий транспортирования, хранения и эксплуатации, установленных в настоящем руководстве.
- 11.2 Гарантийный срок эксплуатации анализатора, поставляемого по территории Российской Федерации, 48 месяцев с момента отгрузки со склада предприятия-изготовителя (с учетом замены изделий с ограниченным ресурсом и расходных материалов).
- 11.3 Гарантийный срок эксплуатации анализатора, поставляемого на экспорт, 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев с момента отгрузки со склада предприятия-изготовителя (с учетом замены изделий с ограниченным ресурсом и расходных материалов).
- 11.4 Изготовитель обязан в течение гарантийного срока бесплатно ремонтировать анализатор при выходе его из строя, либо при ухудшении технических характеристик не по вине потребителя.
 - 11.5 Гарантийные обязательства прекращаются при:
- нарушении условий транспортирования, хранения и эксплуатации анализатора, установленных в руководстве по эксплуатации;
 - нарушении предусмотренных гарантийных пломб;
 - наличии признаков несанкционированного ремонта;
 - механических повреждениях.
- 11.6 В гарантийный ремонт принимается анализатор в упаковке, обеспечивающей сохраняемость анализатора при его транспортировании и хранении, в комплекте с руководством по эксплуатации на анализатор и оригиналом рекламации.
- 11.7 Гарантийные обязательства не распространяются на расходные материалы и детали с ограниченным ресурсом, подверженные износу при нормальной эксплуатации анализатора:
 - электролит ЭК;
 - узел мембранный М404;
 - кольцо 011-014-19-2-7;
 - шприц.

12 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

12.1 В случае обнаружения некомплектности при получении анализатора потребитель должен предъявить рекламацию по адресу:

E-mail: market@vzor.nnov.ru

Телефон/факс: (831) 282-98-00

Почтовый адрес: 603000 г. Н. Новгород, а/я 80, ООО «ВЗОР».

12.2 В случае выявления неисправности в период гарантийного срока потребитель должен предъявить рекламацию по адресу:

E-mail: service@vzor.nnov.ru

Телефон/факс: (831) 282-98-02

Почтовый адрес: 603000 г. Н. Новгород, а/я 80, ООО «ВЗОР».

12.3 Рекламация предъявляется письменно с указанием некомплектности или неисправности.

13 СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

В конструкции каждого из датчиков кислородных анализатора использованы драгоценные металлы:

- серебро проволока Ср 99,99 Т 0,5 ГОСТ 7222-2014 320 мг;
- платина проволока Пл 99,93 Т 1,0 П ГОСТ 18389-2014 150 мг.

14 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 14.1 Транспортирование анализаторов в упаковке предприятия-изготовителя в закрытом железнодорожном или автомобильном транспорте в условиях хранения 5 по ГОСТ 15150-69 при температуре от минус 20 до плюс 50 °C.
- 14.2 Хранение анализаторов в упаковке предприятия-изготовителя в условиях хранения 1 по ГОСТ 15150-69.

В помещениях для хранения не должно быть пыли, паров кислот и щелочи, агрессивных газов и других вредных примесей, вызывающих коррозию.

ПРИЛОЖЕНИЕ А

(обязательное)

УТВЕРЖДАЮ

Руководитель ГЦИ СИ ФБУ «Нижегородский ЦСМ»

И.И. Решетник

2011 г.

АНАЛИЗАТОР РАСТВОРЕННОГО КИСЛОРОДА МАРК-404

Методика поверки

СОГЛАСОВАНО

Директор ООО «ВЗОР»

Е.В. Киселев

Гл. конструктор ООО «ВЗОР»

А. К. Родионов

г. Нижний Новгород 2011 г.

А.1 Область применения

Настоящая методика распространяется на анализатор растворенного кислорода МАРК-404, предназначенные для измерения массовой концентрации растворенного в воде кислорода (КРК) и устанавливает методы и средства их первичной и периодической поверки.

Межповерочный интервал один год.

А.2 Используемые нормативные документы

Р 50.2.045-2005 «Государственная система обеспечения единства измерений. Анализаторы растворенного в воде кислорода. Методика поверки».

РМГ 51-2002 «Государственная система обеспечения единства измерений. Документы на методики поверки средств измерений. Основные положения».

А.3 Метрологические характеристики, проверяемые при поверке

где C – здесь и далее по тексту – измеряемое значение КРК (или соответствующее ему значение тока).

Пределы допускаемой основной абсолютной погрешности анализатора при преобразовании КРК в выходной ток анализатора при температуре анализируемой среды ($20,0\pm0,2$) °C и температуре окружающего воздуха (20 ± 5) °C должны быть, мА \pm ($0,05\pm0,035I_{6ыx}$).

А.4 Операции поверки

При проведении поверки выполняют операции, указанные в таблице А.4.1.

Таблица А.4.1

	Номера	Необходимость проведе		
	пп.	операции при		
	методики	первичной	периодической	
		поверке	поверке	
1 Внешний осмотр		+	+	
2 Опробование		+	+	
3 Проверка «нуля» анализатора		+	+	
4 Определение основной абсолютной		+	+	
погрешности анализатора при изме-				
рении КРК				
5 Определение основной абсолютной		+	+	
погрешности преобразования изме-				
ренного значения КРК в выходной				
ток анализатора				

<u>Примечание</u> – Знак «+» означает, что операцию проводят.

А.5 Средства поверки

Средства измерения, реактивы, материалы, применяемые при поверке, указаны в таблице А.5.1.

Таблица А.5.1

Наименование и тип основного или вспомогательного средства	Номер
поверки; обозначение нормативного документа, регламентирую-	пункта
щего технические требования и (или) метрологические и основные	методики
технические характеристики средства поверки	поверки
Гигрометр психрометрический типа ВИТ-1	
Диапазон измерения относительной влажности воздуха	A.8
от 20 до 90 %. Абсолютная погрешность измерения \pm 7 %.	
Барометр-анероид БАММ-1 ТУ-25-04-15-13-79;	A.8
диапазон измеряемого давления от 80 до 106 кПа,	A.10.4
предел допускаемой основной абсолютной погрешности $\pm 0,2$ кПа	

Продолжение таблицы А.5.1

прооблясние таблицы 11.5.1	
Наименование и тип основного или вспомогательного средства	Номер
поверки; обозначение нормативного документа, регламентирую-	пункта
щего технические требования и (или) метрологические и основные	методики
технические характеристики средства поверки	поверки
Мультиметр цифровой АРРА-305	A.8
Используемый предел измерения переменного напряжения 400 В;	
основная абсолютная погрешность измерения, В:	
$\pm (0.007X + 0.05),$	
где Х – измеренное, значение переменного напряжения, В.	
Используемый предел измерения силы постоянного тока 40 мА;	
основная абсолютная погрешность измерения, мА:	
$\pm (0.002X + 0.004),$	
где X – измеренное значение силы постоянного тока, мА	
Кислородно-азотные	A.10.4
поверочные газовые смеси (ПГС) ТУ-16-2956-2001	
ГСО 3722-87, объемная доля кислорода от 2,50 до 3,93 %;	
ГСО 3726-87 объемная доля кислорода от 10,4 до 12,3 %	
Термометр лабораторный электронный ЛТ-300	A.10.4
ТУ 4211-041-44229117-2005	
Диапазон измерения от минус 50 до плюс 300 °C,	
погрешность измерения ±0,05 °C	
Секундомер механический СОСпр-2б-2-000	A.10.3
ТУ 25-1894.003-90	
Термостат жидкостный ТЖ-ТС-01/26	A.10.4
Диапазон регулирования температуры от 10 до 100 °C.	
Погрешность поддержания температуры не более ±0,1 °C.	
Ротаметр РМ-А 0,063 ГУЗ ГОСТ 13045-81	A.10.4
Микрокомпрессор АЭН-4 ГОСТ 14087-80	A.10.4
Стакан цилиндрический СЦ-5 ГОСТ 23932-79Е	A.10.3
Посуда мерная лабораторная стеклянная ГОСТ 1770-74	A.10.3
Натрий сернистокислый, ч.д.а. ГОСТ 195-77	A.10.3
Кобальт хлористый 6-водный ч.д.а. ГОСТ 4525-77	A.10.3
Вода дистиллированная ГОСТ 6709-72	A.10.3
	A.10.4
Трубка медицинская поливинилхлоридная ПМ-1/42	A.10.4
\varnothing 16×2, L=60 mm	
~ 10.12, 2 00 Halfa	

Примечания

- 1 Допускается применение других средств измерения, не приведенных в перечне, но обеспечивающих определение метрологических характеристик с необходимой точностью.
- 2 Для измерения температуры допускается применение других средств измерения с погрешностью измерения не хуже $\pm 0,1$ °C.

А.6 Требования к квалификации поверителей

К проведению поверки анализаторов допускаются лица, аттестованные в качестве поверителей в области измерения физико-химического состава и свойств веществ, имеющие высшее или среднетехническое образование, опыт работы в химических лабораториях не менее года, владеющие техникой потенциометрических и амперометрических измерений и изучившие настоящую методику поверки.

А.7 Требования безопасности

При проведении поверки должны соблюдаться требования техники безопасности:

- при работе с химическими реактивами − по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75;
- при работе с электроустановками − по ГОСТ Р 12.1.019-2009 и ГОСТ 12.2.007.0-75.

Должны соблюдаться также правила работы с баллонами с ПГС под давлением.

Помещение, в котором осуществляется поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

Исполнители должны быть проинструктированы о мерах безопасности, которые должны соблюдаться при работе с приборами, в соответствии с РЭ. Обучение поверителей правилам безопасности труда должно проводиться по ГОСТ 12.0.004-90.

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ работа с анализатором при снятых крышках корпуса блока преобразовательного!

А.8 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- атмосферное давление, кПа от 84,0 до 106,7;
- поверочные газовые смеси должны быть выдержаны при комнатной температуре не менее 10 ч.

Измерительные приборы, нестандартное оборудование должны иметь отметки, подтверждающие их годность.

А.9 Подготовка к поверке

Перед проведением поверки подготавливают к работе анализатор в соответствии с разделом 2.3 руководства по эксплуатации ВР16.00.000РЭ и проводят проверку технического состояния анализатора в соответствии с разделом 2.4 Руководства по эксплуатации ВР16.00.000РЭ.

Измерительные приборы, нестандартное оборудование должны иметь отметки, подтверждающие их годность, и подготовлены к работе в соответствии с требованиями их технической документации.

А.10 Проведение поверки

А.10.1 Внешний осмотр

Анализатор должен быть представлен на поверку с руководством по эксплуатации, совмещенным с паспортом (ВР16.00.000РЭ).

У анализатора проверяют:

- исправность разъемов, кнопок, соединительных кабелей;
- состояние лакокрасочных покрытий, правильность и четкость маркировки.

Анализаторы, имеющие дефекты, затрудняющие эксплуатацию, к дальнейшей поверке не допускают.

А.10.2 Опробование

А.10.2.1 Проверка функционирования анализатора

Подключают блок преобразовательный к сети. Датчики кислородные размещают на воздухе.

Проверяют работоспособность кнопок « \leftarrow », « \rightarrow ».

Результаты проверки считают удовлетворительными, если при каждом нажатии любой из кнопок происходит поочередное переключение каналов измерения анализатора, при этом загорается соответствующий включенному каналу светодиодный индикатор.

А.10.2.2 Проверка соответствия ПО

Для просмотра версии ПО переходят в соответствии с п. 1.5.4.1 РЭ к экрану индикации номера версии ПО («02.00»).

Переходят в служебное меню (доступ к служебному МЕНЮ передается представителям уполномоченных органов по их запросу) и проверяют контрольную сумму исполняемого кода. Она должна соответствовать значению «0x9C49».

Проверяют обеспечение защиты ПО от несанкционированного доступа (проверяют наличие пломбирования крепления защитной крышки платы блока преобразовательного).

Приборы, результаты опробования которых не соответствуют приведенным требованиям, бракуют и к дальнейшей поверке не допускают.

А.10.3 Проверка «нуля» анализатора

А.10.3.1 Подготовка к измерениям

Приготавливают раствор натрия сернистокислого натрия Na_2SO_3 концентрации $50~\text{г/дm}^3$ («нулевой» раствор) и раствор кобальта хлористого 6-водного концентрацией $2~\text{г/дm}^3$.

В сосуд емкостью 0,3-0,5 дм³ наливают раствор Na_2SO_3 таким образом, чтобы высота жидкости была в диапазоне от 50 до 70 мм, и отстаивают не менее часа. Для ускорения процесса деоксирования раствора добавить 5 см³ раствора кобальта хлористого 6-водного.

А.10.3.2 Выполнение измерений

Включают анализатор.

Погружают датчик в «нулевой» раствор, одновременно включают секундомер.

Фиксируют показания анализатора C_{HVJb10} , мг/дм³, через 10 мин.

А.10.3.3 Обработка результатов измерений

Результаты проверки нуля анализатора считают удовлетворительными, если показания через 10 мин после погружения датчика в «нулевой» раствор $C_{Hyль10}$, мг/дм³, находятся в пределах

$$-0.050 \le C_{Hyль10} \le 0.050.$$

А.10.4 Определение основной абсолютной погрешности анализатора при измерении КРК.

В соответствии с ГОСТ 22729-84 основную абсолютную погрешность анализатора при измерении КРК определяют в трех точках диапазона измерения, расположенных на начальном (0-20 % от диапазона), среднем (45-55 % от диапазона) и конечном (80-100 % от диапазона) участках диапазона измерений. Для проверки используются дистиллированная вода с удельной электрической проводимостью не более 5 мкСм/см, насыщенная кислородом воздуха, а также кислородно-азотные поверочные газовые смеси (ПГС).

Концентрации кислорода в ПГС и в воздухе, концентрации растворенного кислорода, создаваемые этими ПГС и воздухом, приведены в таблице A.10.1.

Таблица А.10.1

$N_{\underline{0}}$	Параметры кислородно-азотной	Массовая	Участок
точки	поверочной газовой смеси (ПГС),	концентрация	диапазона
	воздуха	кислорода	измерения,
		при t=20 °C,	% от диапазона
		$M\Gamma/дM^3$	
	ГСО 3722-87		
1	с объемной долей кислорода 2,50-3,93 %	1,1-1,70	0-20
	(№ 1)		
	ГСО 3726-87		
2	с объемной долей кислорода 10,4-12,3 %	4,5-5,5	45-55
	(№ 2)		
3	Воздух 100 % влажности,	9,09	80-100
J	с объемной долей кислорода 20,95 %	3,03	0U-1UU

А.10.4.1 Определение погрешностей анализатора в точке № 3

Для проверки погрешности в указанной точке используют дистиллированную воду, насыщенную атмосферным воздухом, с концентрацией кислорода, соответствующей 100 % насыщения.

А.10.4.1.1 Подготовка к измерениям

Собирают установку в соответствии с рисунком А.10.1.

К каналу № 1 блока преобразовательного подключают датчик кислородный. Включают режим индикации канала № 1.

К каналу № 1 токового выхода (контактам 1, 9 розетки DB15-F (с/к) в соответствии с таблицей A.10.2) подсоединяют мультиметр APPA-305, включенный в режиме измерения постоянного тока на диапазоне 0-40 мА.

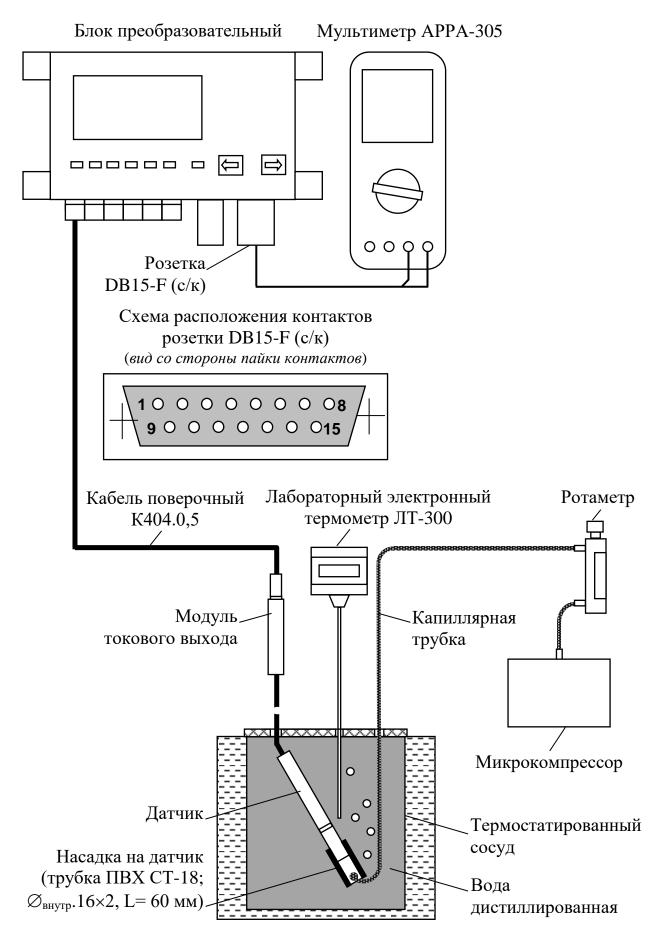


Рисунок А.10.1

Таблица А.10.2

№ канала	№ контакта	Цепь	№ канала	№ контакта	Цепь
1	1	$I_{e \omega x}$	1	4	I_{eblx}
1	9	Корпус	4	12	Корпус
2	2	I_{eblX}	5	5	$I_{e\omega x}$
2	10	Корпус	3	13	Корпус
2	3	I_{eblX}	6	6	$I_{e \omega x}$
3	11	Корпус	U	14	Корпус

В термостатированный сосуд заливают дистиллированную воду.

В сосуде устанавливают:

- датчик, который должен быть расположен в сосуде под углом 60-70° к горизонтальной поверхности;
 - эталонный термометр;
- изогнутую капиллярную трубку, соединенную с выходом микрокомпрессора.

Включают микрокомпрессор и термостат.

С помощью термостата доводят температуру воды в сосуде до значения (20.0 ± 0.2) °C и поддерживают ее с точностью ±0.1 °C.

С помощью капиллярной трубки подводят к мембране датчика воздух от компрессора. Ротаметром устанавливают такую скорость подачи воздуха, чтобы каждые 3-5 с обновлялся воздушный пузырь внутри колпака.

Через 10 мин, не извлекая датчик из сосуда с водой, проводят операции градуировки анализатора по кислороду воздуха.

Для этого шлицом переменного резистора, расположенным на торцевой поверхности модуля токового выхода, устанавливают показания блока преобразовательного, равные

$$C_{paa} = Co_2(t) \cdot \frac{P_{amm}}{101,325},$$
 (A.10.1)

где $Co_2(t)$ – значение КРК для температуры 20 °C, взятое из таблицы Б.1, и равное 9,09 мг/дм³;

 $P_{\it amm}$ – атмосферное давление на момент градуировки, кПа.

А.10.4.1.2 Выполнение измерений

Фиксируют атмосферное давление P_{amm} , кПа, по барометру.

Убирают капиллярную трубку от мембраны датчика на 2-3 мин, затем снова подводят воздух к мембране.

Через 2 мин фиксируют показания анализатора C, мг/дм³, и показания мультиметра $\Delta I_{вых}^{0-20}$, мА, или $\Delta I_{вых}^{4-20}$, мА.

Повторяют измерения еще два раза, каждый раз предварительно подводя к мембране датчика воздух от компрессора.

А.10.4.1.3 Обработка результатов

Рассчитывают основную абсолютную погрешность анализатора при измерении КРК ΔC , мг/дм³, для всех трех измерений по формуле:

$$\Delta C = C - \frac{P_{amm}}{101,325} \cdot Co_{2603\hat{o}}(20), \qquad (A.10.2)$$

где $Co_{2so3\partial}(20)$ — растворимость кислорода воздуха в воде при температуре 20 °C, взятая из приложения Б и равная 9,09 мг/дм³.

Рассчитывают основную абсолютную погрешность преобразования КРК в выходной ток анализатора для токового выхода 0-20 мА ΔI_{eblx}^{0-20} , мА, для всех трех измерений по формуле:

$$\Delta I_{\text{вых}}^{0-20} = I_{\text{вых}}^{0-20} - \beta \cdot \frac{P_{\text{атм}}}{101,325} \cdot Co_{2\text{воз}\hat{o}}(20); \tag{A.10.3}$$

или для токового выхода 4-20 мА $\Delta I_{\it bblx}^{4-20}$, мА, для всех трех измерений по формуле:

$$\Delta I_{gbix}^{4-20} = I_{gbix}^{4-20} - \left(4 + 16 \cdot \frac{\beta \cdot \frac{P_{amm}}{101,325} \cdot Co_{2603\partial}(20)}{20}\right), \quad (A.10.4)$$

где $\beta = 1 \ \frac{\text{MA}}{\text{MГ/ДM}^3}$ в отградуированном датчике кислородном.

Результаты проверки считают удовлетворительными, если для всех трех измерений выполняются условия:

$$-(0,05+0,04C) \le \Delta C \le 0,05+0,04C;$$

$$-(0,05+0,035\,I_{eblx}^{0-20}) \le \Delta I_{eblx}^{0-20} \le 0,05+0,035\,I_{eblx}^{0-20};$$

$$-(0,05+0,035\,I_{eblx}^{4-20}) \le \Delta I_{eblx}^{4-20} \le 0,05+0,035\,I_{eblx}^{4-20}.$$

Аналогичным образом проводят поверку остальных датчиков кислородных, входящих в комплект анализатора.

А.10.4.2 Определение погрешностей анализатора в точке № 2

Для проверки погрешностей в указанной точке используют ПГС № 2 (в соответствии с таблицей A.10.1).

А.10.4.2.1 Подготовка к измерениям

Собирают установку в соответствии с рисунком А.10.2.

Подготовка к измерениям аналогична п. А.10.4.1.1, но вместо воздуха от компрессора к мембране датчика подают ПГС.

При закрытом редукторе открывают вентиль баллона с ПГС.

Плавно открывая вентиль редуктора, подводят ПГС с помощью капиллярной трубки к мембране датчика.

Скорость подачи ПГС должна быть такой, чтобы каждые 3-5 с обновлялся воздушный пузырь внутри насадки на датчик.

А.10.4.2.2 Выполнение измерений

Фиксируют атмосферное давление P_{amm} , кПа, по барометру.

Убирают капиллярную трубку от мембраны датчика на 2-3 мин, затем снова подводят ПГС к мембране.

Через 2 мин фиксируют показания анализатора C, мг/дм³, и показания вольтметра $\Delta I_{\it выx}^{0-20}$, мА, или $\Delta I_{\it выx}^{4-20}$, мА.

Повторяют измерения еще два раза, каждый раз предварительно подводя к мембране датчика ПГС от баллона.



Рисунок А.10.2

А.10.4.2.3 Обработка результатов

Рассчитывают основную абсолютную погрешность анализатора при измерении КРК ΔC , мг/дм³, для всех трех измерений по формуле:

$$\Delta C = C - \frac{P_0}{20,95} \cdot \frac{P_{amm}}{101,325} \cdot Co_{2603\partial}(20), \tag{A.10.5}$$

где P_0 – объемная доля кислорода в ПГС, %;

 $Co_{2603\partial}(20)$ — растворимость кислорода воздуха в воде при температуре 20 °C, взятая из приложения Б и равная 9,09 мг/дм³.

Рассчитывают основную абсолютную погрешность преобразования КРК в выходной ток анализатора для токового выхода 0-20 мА ΔI_{eblx}^{0-20} , мА, для всех трех измерений по формуле:

$$\Delta I_{\text{вых}}^{0-20} = I_{\text{вых}}^{0-20} - \beta \cdot \frac{P_0}{20.95} \cdot \frac{P_{\text{атм}}}{101.325} \cdot Co_{26030}(20); \tag{A.10.6}$$

или для токового выхода 4-20 мА $\Delta I_{\rm coll}^{4-20}$, мА, для всех трех измерений по формуле:

$$\Delta I_{\text{вых}}^{4-20} = I_{\text{вых}}^{4-20} - \left(4 + 16 \cdot \frac{\beta \cdot \frac{P_0}{20,95} \cdot \frac{P_{\text{атм}}}{101,325} \cdot Co_{2603\partial}(20)}{20}\right), \quad (A.10.7)$$

где $\beta = 1 \ \frac{\text{MA}}{\text{MГ/ДМ}^3}$ в отградуированном датчике кислородном.

Результаты проверки считают удовлетворительными, если для всех трех измерений выполняются условия:

$$\begin{split} -(0,05+0,04C) &\leq \Delta C \leq 0,05+0,04C; \\ -(0,05+0,035\,I_{eblx}^{0-20}) &\leq \Delta I_{eblx}^{0-20} \leq 0,05+0,035\,I_{eblx}^{0-20}; \\ -(0,05+0,035\,I_{eblx}^{4-20}) &\leq \Delta I_{eblx}^{4-20} \leq 0,05+0,035\,I_{eblx}^{4-20}. \end{split}$$

Аналогичным образом проводят поверку остальных датчиков кислородных, входящих в комплект анализатора.

А.10.4.3 Определение погрешностей анализатора в точке № 1

Для проверки погрешности в указанной точке используют ПГС № 1 (в соответствии с таблицей A.10.1).

Установка, подготовка к измерениям, проведение измерений и обработка результатов аналогичны указанным в п. А.10.4.2.

А.11 Оформление результатов поверки

- А.11.1 Результаты поверки считают положительными, если анализатор МАРК-404 удовлетворяет требованиям настоящей методики.
- А.11.2 При проведении поверки анализатора составляют протокол, в котором указывается его соответствие предъявляемым требованиям.
- А.11.3 Положительные результаты поверки оформляют выдачей свидетельства о поверке.
- А.11.4 Результаты считают отрицательными, если при проведении поверки установлено несоответствие проверяемого анализатора МАРК-404 хотя бы одному из требований настоящей методики.
- А.11.5 Отрицательные результаты поверки оформляются путем выдачи извещения о непригодности анализатора.

ПРИЛОЖЕНИЕ Б

(справочное)

РАСТВОРИМОСТЬ КИСЛОРОДА ВОЗДУХА 100 % ВЛАЖНОСТИ В ДИСТИЛЛИРОВАННОЙ ВОДЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ

 P_{amm} =101,325 кПа

<i>Таблица Б.1</i>								мг/дм		
t, °C	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	14,62	14,58	14,54	14,50	14,46	14,42	14,38	14,34		
1	14,22	14,18	14,14	14,10	14,06		13,98			13,87
2	13,83	13,79	13,75	13,72	13,68					13,49
3	13,46	13,42	13,39							13,14
4	13,11	13,07	13,04	13,00	12,97					
5	12,77	12,74	12,70	12,67	12,64					12,48
6	12,45	12,41	12,38	12,35	12,32	12,29	12,26	12,23		12,17
7	12,14	12,11	12,08	12,05	12,02	11,99	11,96	11,93	11,90	11,87
8	11,84	11,81	11,79	11,76	11,73	11,70	11,67	11,64	11,62	11,59
9	11,56	11,53	11,51	11,48	11,45	11,42	11,40	11,37	11,34	11,32
10	11,29	11,26	11,24	11,21	11,18	11,16	11,13	11,11	11,08	11,06
11	11,03	11,00	10,98	10,95	10,93	10,90	10,88	10,85	10,83	10,81
12	10,78	10,76	10,73	10,71	10,68	10,66	10,64	10,61	10,59	10,56
13	10,54	10,52	10,49	10,47	10,45	10,42	10,40	10,38	10,36	10,33
14	10,31	10,29	10,27	10,24	10,22	10,20	10,18	10,15	10,13	10,11
15	10,08	10,06	10,04	10,02	10,00	9,98	9,96	9,94	9,92	9,90
16	9,87	9,85	9,83	9,81	9,79	9,77	9,75	9,73	9,71	9,69
17	9,66	9,64	9,62	9,60	9,58	9,56	9,54	9,52	9,50	9,49
18	9,47	9,45	9,43	9,41	9,39	9,37	9,36	9,34	9,32	9,30
19	9,28	9,26	9,24	9,22	9,21	9,19	9,17	9,15	9,13	9,11
20	9,09	9,08	9,06	9,04	9,02	9,01	8,99	8,97	8,95	8,93
21	8,91	8,89	8,87	8,86	8,85	8,83	8,81	8,80	8,78	8,76
22	8,74	8,73	8,71	8,69	8,68	8,66	8,64	8,63	8,61	8,60
23	8,58	8,56	8,55	8,53	8,51	8,50	8,48	8,47	8,45	8,43
24	8,42	8,40	8,39	8,37	8,36	8,34	8,32	8,31	8,29	8,28
25	8,26	8,25	8,23	8,22	8,20	8,19	8,17	8,16	8,14	
26	8,11	8,10			8,05	8,04			7,99	
27	7,97	7,95	7,94	7,92		7,89	7,88			
28	7,83		7,80							7,70
29	7,69	7,67	7,66	7,65	7,63	7,62	7,61	7,59	7,58	7,57

Продолжение таблицы Б.1

$\underline{r}_{P} \circ \circ$	Проболжение тиолицы В.1									
t, °C	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
30	7,56	7,54	7,53	7,52	7,50	7,49	7,48	7,46	7,45	7,44
31	7,44	7,44	7,43	7,42	7,41	7,39	7,38	7,37	7,36	7,35
32	7,33	7,32	7,31	7,30	7,29	7,28	7,26	7,25	7,24	7,23
33	7,22	7,21	7,19	7,18	7,17	7,16	7,15	7,14	7,13	7,11
34	7,10	7,09	7,08	7,07	7,06	7,05	7,04	7,03	7,01	7,00
35	6,99	6,98	6,97	6,96	6,95	6,94	6,93	6,92	6,90	6,89
36	6,82	6,81	6,80	6,78	6,77	6,76	6,75	6,74	6,73	6,72
37	6,71	6,70	6,69	6,68	6,67	6,66	6,65	6,64	6,63	6,62
38	6,61	6,60	6,59	6,58	6,57	6,56	6,55	6,54	6,53	6,52
39	6,51	6,50	6,49	6,48	6,47	6,46	6,45	6,44	6,43	6,42
40	6,41	6,40	6,39	6,38	6,37	6,36	6,35	6,34	6,33	6,32
41	6,31	6,30	6,29	6,28	6,27	6,26	6,25	6,24	6,23	6,22
42	6,21	6,20	6,19	6,19	6,18	6,17	6,16	6,15	6,14	6,13
43	6,12	6,11	6,10	6,09	6,08	6,07	6,06	6,05	6,04	6,04
44	6,03	6,02	6,01	6,00	5,99	5,98	5,97	5,96	5,95	5,94
45	5,93	5,92	5,92	5,91	5,90	5,89	5,88	5,87	5,86	5,85
46	5,84	5,83	5,82	5,82	5,81	5,80	5,79	5,78	5,77	5,76
47	5,75	5,74	5,74	5,73	5,72	5,71	5,70	5,69	5,68	5,67
48	5,66	5,66	5,65	5,64	5,63	5,62	5,61	5,60	5,59	5,59
49	5,58	5,57	5,56	5,55	5,54	5,53	5,52	5,52	5,51	5,50
50	5,49	5,48	5,47	5,47	5,46	5,45	5,44	5,44	5,43	5,42

ПРИЛОЖЕНИЕ В

(справочное)

ПРОТОКОЛ ОБМЕНА

В приборе реализована функция 04 — Read Input Registers протокола MODBUS в режиме RTU.

Для чтения доступно указанное ниже адресное пространство прибора (адрес формируется как адрес двух байтового регистра, таким образом указанные адреса в двое меньше физического адреса памяти процессора MSP430 прибора).

Таблица В.1 – Измеренные значения прибора МАРК-404

Имя	Адрес	U)ODMAT
	_	Формат
	(HEX)	
ное значение тока канала 1	0x0100	Float (4 байта) (2 регистра)
ное значение тока канала 2	0x0102	Float (4 байта) (2 регистра)
ное значение тока канала 3	0x0104	Float (4 байта) (2 регистра)
ное значение тока канала 4	0x0106	Float (4 байта) (2 регистра)
ное значение тока канала 5	0x0108	Float (4 байта) (2 регистра)
ное значение тока канала 6	0x010A	Float (4 байта) (2 регистра)
ное значение тока канала	0x010C	Float (4 байта) (2 регистра)
вки		
ное значение КРК канала 1	0x010E	Float (4 байта) (2 регистра)
ное значение КРК канала 2	0x0110	Float (4 байта) (2 регистра)
ное значение КРК канала 3	0x0112	Float (4 байта) (2 регистра)
ное значение КРК канала 4	0x0114	Float (4 байта) (2 регистра)
ное значение КРК канала 5	0x0116	Float (4 байта) (2 регистра)
ное значение КРК канала 6	0x0118	Float (4 байта) (2 регистра)
ное значение КРК канала	0x011A	Float (4 байта) (2 регистра)
вки		
значение КРК канала 1	0x011C	Float (4 байта) (2 регистра)
значение КРК канала 2	0x011E	Float (4 байта) (2 регистра)
значение КРК канала 3	0x0120	Float (4 байта) (2 регистра)
значение КРК канала 4	0x0122	Float (4 байта) (2 регистра)
значение КРК канала 5	0x0124	Float (4 байта) (2 регистра)
значение КРК канала 6	0x0126	Float (4 байта) (2 регистра)
	0x0128	Word (2 байта) (1 регистр)
Error15	0x0129	Word (2 байта) (1 регистр)
	0x012A	Word (2 байта) (1 регистр)
вого выхода канала	0x012B	Word (2 байта) (1 регистр)
вки		
нное значение контрольной	0x012C	Word (2 байта) (1 регистр)
ода программы		
	ное значение тока канала 2 ное значение тока канала 3 ное значение тока канала 4 ное значение тока канала 5 ное значение тока канала 6 ное значение тока канала 1 ное значение КРК канала 1 ное значение КРК канала 2 ное значение КРК канала 3 ное значение КРК канала 3 ное значение КРК канала 4 ное значение КРК канала 5 ное значение КРК канала 6 ное значение КРК канала 6 ное значение КРК канала 1 вначение КРК канала 1 вначение КРК канала 2 вначение КРК канала 3 вначение КРК канала 3 вначение КРК канала 3 вначение КРК канала 6	ное значение тока канала 3

Таблица В.2 – Параметры прибора

1 dionitity et B.2	The participal repeace of the		
Группа	Имя	Адрес	Формат
		(HEX)	
Тип	Тип токового выхода канала 1	0x0840	Word (2 байта) (1 регистр)
токового	Тип токового выхода канала 2	0x0841	Word (2 байта) (1 регистр)
выхода	Тип токового выхода канала 3	0x0842	Word (2 байта) (1 регистр)
	Тип токового выхода канала 4	0x0843	Word (2 байта) (1 регистр)
	Тип токового выхода канала 5	0x0844	Word (2 байта) (1 регистр)
	Тип токового выхода канала 6	0x0845	Word (2 байта) (1 регистр)
	Не определено	0x0846	Word (2 байта) (1 регистр)
Время	Время усреднения	0x0847	Word (2 байта) (1 регистр)
усреднения,			
МИН			

Таблица В.3 – Наименование анализатора

Группа	Имя	Адрес (НЕХ)	Формат
Наименование	Строка комплексного наименования	0x0880	String
	прибора и программного обеспечения		(105 байт)

Таблица В.4 – Идентификатор ПО анализатора

Группа	Имя	Адрес (НЕХ)	Формат
Идентификатор ПО	Строка идентификатора ПО	0x0A00	String (16 байт)
КС	Значение контрольной суммы	0x0A08	Word (2 байта)
			(1 регистр)

Адреса записаны в шестнадцатеричном виде.

ErrorI0 — измеренное значение тока в канале имеет отрицательное значение.

ErrorI4 — измеренное значение тока в канале <4 мА при типе токового выхода (4-20 мА).

ErrorI30 – измеренное значение тока в канале >30 мА.

Error15 — напряжение питания датчиков вне диапазона 12-18 В.

Наличие ошибки -1, отсутствие ошибки -0.

ErrorI4 – адрес 0X129

	- '														
0	0	0	0	0	0	0	0	e15	ch1	ch2	ch3	ch4	ch5	ch6	ch7

Bit 15

ch1 ...ch6 – состояние ошибки ErrorI4 в каналах 1...6.

ch7 – состояние ошибки ErrorI4 в канале градуировки.

e15 – состояние ошибки Error15.

ErrorI0, ErrorI30 – адрес 0X128, 0X12A

0 0 0 0 0 0 0 0 0 ch1 ch2 ch3 ch4 ch5 ch6 c

Bit 15

ch1 ...ch6 – состояние ошибки в каналах 1 ... 6. ch7 – состояние ошибки в канале градуировки.

Тип токового выхода – адрес 0X12B, 0X0840 ... 0X0846

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X

Bit 15

XX = 00 — тип токового выхода (4-20 мА).

XX = 01 — тип токового выхода (0-20 мА).

XX = 02 - и любое другое – (канал отключен)

Время усреднения – адрес 0Х0847

0 0 0 0 0 0 0 0 0 0 0 X X X

Bit 15

XXXX = время усреднения в минутах (0-9).

Измеренное значение

Числа float измеренных значений расположены в двух последовательных регистрах.

Младшая часть расположена в регистре с меньшим адресом.

ВНИМАНИЕ: В соответствии с протоколом MODBUS данные 16-ти разрядного регистра передаются двумя байтами старшим байтом вперед!

Вычисленное значение контрольной суммы кода программы – адрес 0x012C.

Шестнадцатиразрядное число, полученное путем арифметического сложения шестнадцатиразрядных регистров по всей памяти программ, в том числе блока режимов работы прибора. Вычисление производится при включении анализатора и обновляется после каждой команды чтения данного адреса.

Наименование прибора – адрес 0X0880. Строка текста с разделителем <tab>.

Пример:

y<tab>000001<tab>15.03.10<tab>404P_430_02_00.txt<tab> Программное обеспечение анализатора растворенного кислорода МАРК-404.

Идентификатор ПО прибора – адрес 0x0A00. Строка текста MAPK-404 v02.XX.

ПРИЛОЖЕНИЕ Г

(справочное) СВЕДЕНИЯ ОБ ЭЛЕКТРОЛИТЕ

Γ .1 Сведения об электролите приведены в таблице Γ .1.

Таблица Г.1

Наименование и обозначение	Электролит ЭК ВР47.05.100
Внешний вид	бесцветная жидкость
Состав и информация	водный раствор.
о компонентах	Состав: КСL, хч – 14 г; КОН, х.ч. – 0,2 г;
	трилон Б -0.15 г; вода дистиллированная до
	$0,1$ дм 3
Растворимость в воде	растворимый
Токсичность	не токсичен
рН при 20 °C	12,4
Транспортировка	все виды транспорта в соответствии с пра-
	вилами перевозок грузов, действующими на
	данном виде транспорта
Утилизация	утилизируется как химический реактив
Хранение:	
 условия и место хранения 	хранить в закрытой таре в крытых складских
	помещениях в условиях, установленных для
	хранения щелочей;
температура хранения	от минус 30 до плюс 50 °C.
Срок годности	не ограничен
Меры предосторожности	работать в помещениях, оборудованных об-
	щей приточно-вытяжной механической вен-
	тиляцией с соблюдением техники безопас-
17	ности по ГОСТ 12.1.007-76.
Индивидуальные	защитные перчатки, очки или маска
средства защиты	
Первая помощь:	~
 при отравлении 	промыть рот и зев обильным количеством
пероральным путем	воды
(попадании в рот)	HOME 2 9/ WIN DOWN - 2007 - 2016 - 2019
 при попадании в глаза 	промыть 2 %-ным водным раствором борной
	кислоты; обратиться к врачу. смыть обильным количеством воды или
 при контакте с кожей 	смыть обильным количеством воды или 2%-ным водным раствором борной кислоты.
	2 /0-пым водпым раствором оорной кислоты.